

UŽIVATELSKÝ MANUÁL

A4400 VA4 Pro A4404 SAB s Virtual Unit

ADASH s.r.o.

Obsah:	
--------	--

Před čtením manuálu	8
A4400 VA4 Pro vs. A4404 SAB	9
A4400 VA4 Pro	9
A4404 SAB (Signal Analyzer Box)	9
Ovládání grafu pomocí myši	9
Před zapnutím	.11
Obecná varování	.11
Varování pro USB spojení/odpojení s počítačem	.11
Nabíjení baterie	.12
Základní informaca	12
Vysvětlivky ke zkratkám	13
Horní panel	.13
Zapnutí přístroje	.13
Vypnutí přístroje	. 14
Režim spánku	. 14
Automatické vypnutí přístroje	.14
Nouzové vypnutí přístroje	.14
Varovani pri zapineni disku daty	.14
	. 15
Přinciení	15
VAx DISC (pouze pro VA4 II)	15
Nabíjení baterie v přístroji	.15
DSP jednotka - stavy a reset	.16
Virtuální analyzátory pro jednu úlohu	.16
Spuštění A4410 Virtual Unit na počítači	.16
Jak pracovat s menu	.17
Výběr položek	. 17
Zadání uživatelské hodnoty	.17
Více násobný výběr položek (multi výběr)	.19
Vyhledání položky v seznamu	.19
Signálové a spouštěcí konektory	.20
Konektor IN1	. 20
Konektor IN2	.21
Konektor IN3	.21
Konektor IN4	. Z1
Standardní zapojení kabelu pro snímač	. 22
Varianta ODU	.23
Konektor IN2	.23
Konoktor IN2	.20
NULEKIULIND	.24
Konektor IN4	
Konektor IN4 Konektor TRIG	.24
Konektor IN3 Konektor IN4 Konektor TRIG	.24 , 25
Konektor IN3 Konektor IN4 Konektor TRIG A4409 - BNC Box	.24 . 25 26
Konektor INS Konektor IN4 Konektor TRIG A4409 - BNC Box Vlastnosti snímačů Vlastnosti AC snímačů	.24 . 25 . 26
Konektor INS. Konektor IN4. Konektor TRIG. A4409 - BNC Box. Vlastnosti snímačů Vlastnosti AC snímačů. Nastavení skupiny dle ISO 10816.	.24 .25 .26 .26
Konektor INS Konektor INS Konektor TRIG A4409 - BNC Box Vlastnosti snímačů Vlastnosti AC snímačů Nastavení skupiny dle ISO 10816 Nastavení ložiska	.24 .25 .26 .28 .28

ADASH s.r.o.	Adash 4400 –	VA4Pro (II)
Vlastnosti Tacho snímače		29
Prodloužení ustálení		
Vlastnosti snímačů uložené v záznamu		
Global vlastnosti		31
Vypnout		31
Jas		31
Screenshot		
Exportovat vše		
O přístroji		31
Nápověda		
Nastavení trigru		
Global Nastavení		35
Vzhled		
Rozběh		
Spektrum nastavení		
Datum/ Čas		
Nastavení uživatelských poznámek		
Profil		
Zdroj signálu		
Hlavní obrazovka		40
Undate software v přístroji		40
Update databáze ložisek		40
Stav nabití baterie		
I lacitka		
LIACITKO SNITT		
Detekce otáček		43
Analyzátor		45
Měření		40 45
Graf	•••••	
Sestava		45
Projekt		
Export Projektu na VA4_DISC (flash disk)		
Analyzátor - úvodní obrazovka		46
Nový projekt - Sestava		
Nový projekt - Stroj		47
Nový projekt - Adresa		48
Vytvoření nového měření		48
Nové základní		49
Nové rozšířené		50
Další funkce pro Měření		52
Kopíruj		52
Info		52
Změň		52
Smaž		52
Meze		52
Export do uff		56
Export do wav		50
Export do csv		57
Export do csv (vse)		57
Export no VAA DISC		51 E7
Export lia VA4_DISC Popis dat v souboru csv		57 57
Další funkce pro projekt a položky strukturovaného projektu		
Funkce pro projekt a položky strukturovalično projektu Funkce pro sestavu – menu Sestava		טז קפ
1 annos pro sosiava – menu oesiava		

ADASH s.r.o.	Adash 4400 –	VA4Pro (II)
Zadej otáčky		58
Zruš otáčky		59
Vytváření měření v Sestavě		59
Vstupní zásobník		60
Pásmo fmin[Hz] - HP filtrace		60
Popis tlačítek v módu Analyzátor		61
Tlačítko Význam šipek		61
Tlačítko Start a OK		61
Tlačítko Stop, Zrušit, Zpět a Zavřít		61
Graph Max/Min		61
Graf Vlastnosti		62
Měření FASIT		
Měření širokopásmové hodnoty		
Použití limitních hodnot podle ISO 10816		69
Měření spektra		70
Full spektrum		70
Měření časového signálu		73
Průměrování časového signalu		73
Časový signál se steinosměrnou složkou (gan)		73
Měření a-demod snektra		73
Měření g-demod česového signálu		74 75
Měření a demod širokonásmové hodnoty		75
Měření amp+fáze		75
Měření anpitaze		75
Mětení orbity so stojnosměrnou složkou (gan)		70
Měření filtrované erbity		70
Měření řádové analyzy		
Ďádová full opektrum		
		00 80
Měření III - Iřekvenchi odezva.		
Měření oktavoveno spektra, niadiný niuku a ekvivalentní niadiný	[,] muku	
		84
		85
		80
		80
Zaznam		87
Vyvažování		88
Úvod		
Proiekt		
Obrazovky projektu		
Úvodní obrazovka		
Nový projekt		
Nastavení vyvažování		
Základní nastavení		91
Nastavení jednotek		92
Údaje o rotoru		92
Vyvažování v jedné rovině		02 Q2
BĚH 1		
BĚH 2 – testovací závaží		Q1
$B\dot{E}H 2 = v s s c v a c zavaziB\dot{E}H 2 = v s s c s c v a c zavazi$		04 05
RUN 3 - kontrola úsněšnosti		02
Trim - další zlepšení výsledku		99

ADASH s.r.o.	Adash 4400 – VA4Pro (II)
Vyvažování ve dvou rovinách	
BĚH 1	99
BĚH 2 - zkušební závaží v rovině 1	100
BĚH 2 - zkušební závaží v rovině 2	101
BĚH 2 - výsledky	102
BĚH 3 - kontrola úspěšnosti	103
Trim obrazovky	103
Chyby při vyvažování	
Malý vliv testovacího závaží	103
RunUp	
Ovládání měření	
Význam pojmů v módu RunUp	
Run up měření	
Menu Trend	
Pochůzka	108
Nahrání nochůzky do nřístroje	108
Tyorba pochůzkového stromu	100
	100
Poznámky	
Nová poznámka	112
Upravy poznámek	113
Export na VA4_DISC	
Nahrání pochůzky do počítače	
Otáčky v pochůzce	
Otáčky zadány v přístroji	114
Otáčky zadány v DDS	114
Otáčky měřené	114
Limity	
Recorder - nahrávání signálu	116
Nový záznam - projekt	116
Drojekt	
Projeki Nastavení exportu do wav	117
Spímožo	110
Záznam	110
	110
SIARI	118
	118
	119
Vyznam sipek	119
Zoom X	119
Zoom Y	119
Pouziti zaznamu pro analyzu	
Docasne zaznamy	
FASIT	
Nastavení	
Nastavení snímače	
Nastavení jednotek	
Měření	
Obrazovka FASIT	
l imitní hodnoty pro hodnocení vibrací	122
L imity celkového stavu stroje	122
L imity stavu valivého ložiska	120

ADASH s.r.o.	Adash 4400 – VA4Pro (II)
Stethoscope - stetoskop	
Zpoždění audio výstupu	
Nastavení přehrávání	
Volba kanálů pro stereo výstup	
l ubri - kontrola mazání	197
Dvě možnosti měření	107
Mazání a měření	128
Oktávová analýza	
Algoritmus oktávové analýzy	
Bump Test	
Nastavení	
Určení amplitudy pro spouštění měření	
Měření spektra odezvy	
Vyhodnocení testu	
	125
ADJ	
Projeki ADS	
Import projektu Dřenećní geometrie	100
Prepsani geometrie Manu Projekt	130
Konírui	
Ropinaj	130
Smož	130
Siliaz Smaž data	130
Siliaz dala Export dat	130
Export projektu	136
Nastavení ADS	136
Parametry měření	137
Referenční směr	137
Frekvence pro animaci	137
Měřítko vibrací	137
Pohled	137
Pohled Stroi	137
Pohled Měření	138
Pohled Stroi + Měření	139
Automatická změna pohledu	140
Tlačítka pohledu Stroi	
Fit	140
Význam šipek	140
Bod	140
Směr	140
Zoom/Move/Rotace	140
Blik zap/Blik vyp	141
Skrýt zap/Skrýt vyp	141
Spustit animaci	141
Zadat směr	141
Start	141
Tlačítka pohledu Měření	
180° zap/180°vyp	141
Ulož	141
liltrazvuk	149
L'Ivod	1/10
Nastavení snímače	142 170
Nastavení	
Měření	
Poslech	

Další informace naleznete na www.adash.com nebo napište dotaz na email: info@adash.cz

ADASH s.r.o.	Adash 4400 – VA4Pro (II)
A4410 Virtual Unit	
Instalace	
Instalace ovladačů pro A4404 –Signal Analyzer Box	144
Instalace software	145
Instalace licence	145
Update	145
Provoz	
VA4_DISC	
Struktura VA4_DISC	145
Propojení virtuálního přístroje se skutečným přístrojem	
Kopírování projektů do přístroje	146
Kopírování projektů a záznamů z přístroje	146
Rozdíly mezi Virtual Unit a skutečným přístrojem	146
Příloha A: Technická specifikace	
Vstupv	
Dvnamické vstupv (AC - střídavé)	147
Snímání otáček - Tacho vstup	147
Statické vstupy (DC nebo 4-20mA - stejnosměrné)	147
Měřící funkce	
Záznam signálů:	
Vyvažování:	
Obecné VA4 Pro II (od roku 2018):	
Obecné VA4 Pro (do roku 2018):	149
Příloha B: Měření fáze	150
lednokanálová měření s tacho značkami	150
Dvoukanálová měření	152
Přinomínka	153
Příloha C: Překlady názvosloví typů měření a vlastností	grafů154
Označení vstupů	
Typy méření	
Zkratky v popisech gratu	

Před čtením manuálu

Analyzátor VA4 je stále vyvíjen. Nové funkce a vlastnosti jsou přidávány velmi často. Tato situace samozřejmě má dopad na manuál, který musí být souběžně měněn.

Všechny nové funkce jsou vždy v manuálu podrobně popsány. Jsou však místa, kde obrázky nebo jejich části nehrají důležitou úlohu a plní spíše funkci pozadí. Na takových místech se můžete setkat s obrázky, které nemusí odpovídat nejnovější verzi firmwaru.

<u>A4400 VA4 Pro vs. A4404 SAB</u>

V tomto manuálu jsou popsány oba produkty. Tato kapitolka by měla vysvětlit rozdíl mezi analyzátorem A4400 VA4 Pro a analyzátorem A4404 SAB.

A4400 VA4 Pro

A4400 VA4 Pro je přenosný analyzátor vibrací, který je založen na unikátní DSP (= Digital Signal Processing) desce vyvíjené firmou Adash.

A4400 VA4 Pro analyzátor

A4404 SAB (Signal Analyzer Box)

A4404 SAB je malý analyzátor bez obrazovky a klávesnice. Uvnitř má stejnou DSP desku jako A4400 VA4 Pro. Obsahuje pouze konektory pro snímače a USB konektor pro připojení k počítači. Ovládá se z počítače pomocí aplikace A4410 Virtual Unit, která je stejná jako software v přístroji. Aplikace je volně ke stažení. A4404 SAB spolu s A4410 Virtual Unit umožňuje stejné funkce jako A4400 VA4.

Ovládání grafu pomocí myši

Aplikace A4410 Virtual Unit běží na PC. Proto si můžete její ovládání usnadnit použitím myši.

Výběr grafu

Levé tlačítko

Kurzor

Levé tlačítko nad vybraným grafem. Kurzor bude umístěn na bod v signále, který je nejblíže místu kliknutí.

Maximalizace / minimalizace grafu

Levý dvojklik

Zoom

Kolečko Je-li kurzor myši pod (nebo lehce nad) osou x, zoom platí jen pro osu x. Je-li kurzor myši vlevo od osy y, zoom platí jen pro osu y. Je-li kurzot myši ve vnitřní oblasti grafu, zoom platí pro osu x i y.

⁹

Posun Tažení myši se stisknutým levým tlačítkem

<u>Před zapnutím</u>

Porušení kteréhokoliv z níže uvedených doporučení může způsobit poruchu přístroje!

Obecná varování

Nikdy nepřipojujte analyzátor k napětí vyššímu než 30 V!

Do signálových vstupů AC připojujte pouze snímače s vhodným ICP napájením.

V případě požadavku na měření bez ICP napájení je nutné jej vypnout. Jinak můžete poškodit externí zdroj signálu.

Nikdy nepřipojujte do signálových střídavých vstupů (AC1-AC4) napětí vyšší než \pm 18 V (špičkové), které může nevratně poškodit přístroj.

Nikdy nepřipojujte do stejnosměrných vstupů (DC1-DC4) napětí vyšší než \pm 30 V, které může nevratně poškodit přístroj.

Vždy používejte pouze kabely určené pro propojení se snímači.

Dlouhé přidržení tlačítka POWER může způsobit špatné vypnutí přístroje. Může dojít ke ztrátě dat.

Pokud si nejste něčím jisti, kontaktujte výrobce na info@adash.cz.

Varování pro USB spojení/odpojení s počítačem

USB datové spojení/odpojení s počítačem vždy provádějte při vypnutém přístroji A4400.

Nabíjení baterie

Nabíjení článků 0-40°C !

Přístroj A4400 je napájen baterii s články Li-ION. Jednou z vlastnosti těchto článku je, že se nesmí úplně vybíjet. Vybití článků pod určité povolené napětí se říká hluboké vybití. Toto hluboké vybití má negativní vliv na životnost článku a také funkci přístroje. Přístroj pak nelze zapnout někdy i po několikahodinovém nabíjení nebo může náhle významně klesnout vydrž baterie.

K hlubokému vybití baterie obvykle dochází když přístroj zůstane dlouhou dobu nenabitý a samovybíjením článků se přístroj dostane do stavu hlubokého vybití. Častou chybou je také, když se přístroj namísto vypnutí uvede zmačknutím tlačítka POWER do stavu "SLEEP". Při hlubokém vybití článku přechází nabíječka do zotavovacího režimu, kdy jsou články po dlouhou dobu nabíjeny velmi malým proudem. Až po zotavení baterie z hlubokého vybití je nabíječka schopna baterii normálně nabíjet. Při hlubokém vybití článků se někdy kontrolka nabíjení rozsvítí až po dlouhé době.

Pro zamezeni hlubokého vybití baterie je doporučeno nenechávat přístroj dlouhodobě vybitý. Po vypnutí přístroje vždy ověřit zda skutečně došlo k vypnutí přístroje. V případě, že se přístroj dlouhodobě nepoužívá je nutno jej pravidelně dobíjet.

CO DĚLAT KDYŽ PŘÍSTROJ NELZE ZAPNOUT / NELZE NORMÁLNĚ NABÍT

- Vybitá baterie přístroj nutno nabít (doba nabíjení typ. asi 3h), přístroj krátce po začátku nabíjení lze s připojenou nabíječkou normálně zapnout.
- Hluboce vybitá baterie, kdy byl přístroj nechán dlouhou dobu nenabitý přístroj je nutné nechat nabíjet tak dlouho až se kontrolka nabíjení rozsvítí zeleně, někdy i více než 12h, přístroj někdy nelze delší dobu zapnout ani s připojenou nabíječkou. Pozor, při hlubokém vybití článků se někdy kontrolka nabíjení rozsvítí až po dlouhé době.
- Poškozená nabíječka po připojení nabíječky se musí rozsvítit oranžově nebo zeleně kontrolka nabíjení vedle konektoru nabíjení. Pozor, při hlubokém vybití článků se někdy kontrolka nabíjení rozsvítí až po dlouhé době.
- Náhlý pokles výdrže baterie přístroj je nutno několikrát (obvykle 2-5x) po sobě úplně vybít a pak zase úplně nabít. Doba výdrže by se pak měla postupně zvyšovat.

Základní informace

Vysvětlivky ke zkratkám

Překlady některých označení z angličtiny do češtiny by byly těžkopádné a často i matoucí. Proto jsou v manuálu používány univerzální zkratky a některá jména v anglické syntaxi. Podrobné vysvětlení a překlady všech takových výrazů jsou obsaženy v **Příloze C**.

Horní panel

Verze A4400 VA4 Pro II (od ledna 2018)

Starší verze A4400 VA4 Pro

Zapnutí přístroje

Tlačítko POWER je v pravém dolním rohu čelního panelu. V pravém horním rohu jsou dvě LED diody. Levá dioda indikuje zapnutí, pravá indikuje nabíjení. Držte tlačítko POWER několik sekund dokud se nerozsvítí levá dioda. Nejdříve problikne chvíli červeně, pak se rozsvítí zeleně.

ADASH s.r.o.

Adash 4400 – VA4Pro (II)

Starší verze přístroje má tlačítko POWER na horním panelu. Zelená dioda je v pravém horním rohu čelního panelu. Stiskněte tlačítko a dioda se rozsvítí.

Vypnutí přístroje

Vypnutí přístroje je možno povést:

- tlačítkem Vypnout na hlavní obrazovce přístroje
- v menu Nastavit položka Vypnout

Pozor! Tlačítko POWER (učené k zapínání) nevypíná přístroj! Pouze přepíná přístroj do režimu spánku.

Režim spánku

Pro přepnutí přístroje do režimu spánku stiskněte tlačítko POWER. V režimu spánku je vypnutá obrazovka a je nižší spotřeba energie. Pro návrat z režimu spánku znovu stiskněte tlačítko POWER.

Automatické vypnutí přístroje

Přístroj se sám vypne, pokud do 5 minut po zapnutí není stisknuta žádné tlačítko.

Nouzové vypnutí přístroje

Toto není správný způsob, jak vypnout přístroj. Může způsobit poškození dat. Použijte tento způsob pouze v nouzovém případě (např. když systém zamrzne). Podržte tlačítko **POWER** po dobu asi 5 sekund. Přístroj se vypne.

Varování při zaplnění disku daty

Pokud je v paměti již málo volného místa pro ukládání dat, objeví se na obrazovce varovné hlášení. Vymazáním již nepotřebných záznamů z Recorderu nebo pochůzek se velikost dostupné paměti zvětší.

85% disku je zaplněno. Delší měření nebudou možná.

ADASH s.r.o. **Připojení analyzátoru k počítači**

VA4_DISC

Všechna data (projekty, měření, odečty, nastaveni apod.) jsou uložena na hard disku, který je určen pouze k vnitřním účelům. Dále přístroj obsahuje flash disk (**VA4_DISC**) přístupný z externího počítače. **VA4_DISC** je rozhraní pro uživatelská data. Např. uložíte pochůzku na **VA4_DISC**, přístroj ji automaticky přehraje na svůj vnitřní disk, pak s pochůzkou pracujete (měříte, prohlížíte) a nakonec exportujete zpět na **VA4_DISC**, odkud k ní máte přístup z počítače. Nemusíte exportovat všechna data z vnitřního disku. Exportujte pouze ta data, na která chcete mít přístup z počítače. Detailní popis exportů bude uveden později v kapitolách o práci s projekty v jednotlivých modulech.

Připojení

Pro připojení přístroje (přesněji řečeno jeho **VA4_DISC**u) k počítači použijte USB kabel, který je ve standardním příslušenství VA4Pro. Malou zástrčku připojte do USB vstupu v analyzátoru (viz.horní obrázek). Druhou USB zástrčku připojte k počítači.

U novější verze přístroje A4400 VA4 Pro II je připojení k PC indikováno ikonou počítače vpravo dole vedle ikony baterie.

Ikona se objeví hned po zasunutí USB kabelu, ale k připojení k PC dojde jen v případě, že se nacházíte v hlavní obrazovce. Do té doby je VA4_DISC stále připojen k přístroji a vy jej ve svém PC nevidíte. Skutečné propojení s PC je oznámeno oknem se zprávou.

VAx_DISC (pouze pro VA4 II)

Někdy můžete potřebovat pro rozhraní více paměti než nabízí VA4_DISC (16GB pro VA4 II). K přístroji můžete připojit jakýkoli USB disk. Aby přístroj váš disk rozeznal, pojmenujte jej **VAx_DISC**. Použijte standardní USB OTG kabel (viz níže), aby se přístroj choval jako USB host. Malou zástrčku připojte do USB vstupu v analyzátoru potom připojte USB disk do zástrčky OTG kabelu. Připojený **VAx_DISC** má přednost před **VA4_DISC**em.

Poznámka: OTG kabel není součásti příslušenství VA4.

Nabíjení baterie v přístroji

Zásuvka pro nabíjení je na horním panelu. LED dioda indikující nabíjení je v pravém horním rohu čelního panelu. LED svítí červeně během nabíjení a zeleně, když je baterie nabitá. **Poznámka.** Jedná se o pravou z dvojice diod nad tlačítky (levá dioda indikuje, že je přístroj zapnutý).

ADASH s.r.o.

Starší verze přístroje má zásuvku pro nabíjení nad tlačítkem pro zapnutí/vypnutí přístroje. BAT LED svítí oranžově během nabíjení a zeleně, když je baterie nabitá.

DSP jednotka - stavy a reset

DSP jednotka je srdcem celého zpracování dat. Její rychlost umožňuje 4 kanálová měření v tzv. reálném čase. LED STAT na horním panelu informuje v jakém stavu se DSP jednotka právě nachází:

- bliká zeleně 4 krát za sekundu - probíhá měření,

- bliká zeleně 1 krát za sekundu - neprobíhá měření, jednotka připravena

- bliká nebo svítí červeně - chyba zpracování.

Pokud se objeví červená, je potřeba provést reset jednotky. Vypněte a zapněte přístroj.

Starší verze přístroje umožňuje rychlejší reset DSP. Nevypínejte celý přístroj. Použijte tenký předmět (např.kancelářskou sponku) a lehce stiskněte tlačítko RST.

Další LED dioda se nachází u vstupních konektorů každého AC vstupu:

- svítí zeleně – na daném vstupu probíhá přenos dat (bez chyby)

- nesvítí - na daném vstupu neprobíhá přenos dat

- bliká červeně – vstup je v chybovém stavu (obvykle chyba napájení ICP).

Pozn.: Při měření svítí pouze diody u kanálů, na kterých se měří (diody, které před měřením blikaly červeně, zhasnou a po skončení měření začnou opět blikat).

Virtuální analyzátory pro jednu úlohu

Pokud starší typy analyzátorů prováděly více měření, pak je prováděly jedno po druhém. Když uživatel potřeboval změřit například celkové zrychlení, celkovou rychlost, časový signál rychlosti a spektrum rychlosti z jednoho snímače, přístroj prováděl nejdříve první celkové měření, pak druhé celkové měření s integrací, pak časový signál a nakonec spektrum. Čas potřebný pro měření všech 4 měření byl tedy součet všech 4 jednotlivých časů. V přístroji VA4 se používají pokročilejší metody virtuálních analyzátorů. Pro každé jednotlivé měření, je v paměti přístroje vytvořen právě jeden virtuální analyzátor.

Co to znamená? To, že celkový čas měření není součet všech jednotlivých časů, ale je roven času nejdelšího měření.

Spuštění A4410 Virtual Unit na počítači

Stáhněte si A4410 VirtualUnit z našich webových stránek. Nainstalujte jej na svém počítači. Měření lze samozřejmě provádět pouze nad záznamy (DefaultRec).

<u>Jak pracovat s menu</u>

Pro nastavení různých parametrů měření se používají tzv.menu. Práce s nimi je stejná jako na stolním počítači. Popíšeme ovládání na příkladu nastavení vlastností snímače.

Výběr položek

Stiskněte tlačítko Snímače, objeví se následující menu.

AC 1
AC 2
AC 3
AC 4
Všechny AC snímače
Všechna ložiska
Všechna ISO
DC 1
DC 2
DC 3
DC 4
Všechny DC snímače
Tacho

Pomocí šipek (nahoru,dolů) vyberte jednu položku a potvrďte tlačítkem OK.

ICP: z	apnuto
Citli∨ost[mV/g]:	100
Jednotka:	g
Pozice[°]:	nedef
ISO Skupina stroje:	nedef
Typ ložiska:	nedef
Uložit	

Pomocí šipek vyberte položku **Citlivost**. Za touto položkou již nenásleduje další menu, ale zadání požadované hodnoty. Stiskněte **OK** nebo **šipku doprava** a vpravo se rozvine nabídka předdefinovaných hodnot. Vyberte hodnotu a potvrďte **OK**. Pokud chcete nabídku sbalit bez změny nastavení stiskněte **Storno** nebo **šipku doleva**.

ICP:	zapnuto	
Citlivost[mV/g]:	100	1
Jednotka:	g	10
Pozice[°]:	nedef	100
ISO Skupina stroje	e: nedef	jiná
Typ ložiska:	nedef	
Uložit		

Zadání uživatelské hodnoty

Pokud nevyhovuje žádná s předdefinovaných hodnot, lze zadat jakoukoliv jinou hodnotu z klávesnice. Zvolte položku **jiná** a potvrďte **OK**. Objeví se nové okno pro ruční zadání.

Současně se změnily tlačítka okolo obrazovky. Tlačítko **0** (nula) umožňuje také zadání . (desetinná tečka) a - (mínus). Provádí se opakovaným stiskem podobně jako na mobilním telefonu.

Pokud je potřeba zadávanou hodnotu upravit (přepsat číslo, smazat) stiskněte tlačítko **Shift**. Význam tlačítek se změní. Objeví se pravá a levá šipka, **Del** (smazání vpravo) a **BackSp** (smazání vlevo).

18 Další informace naleznete na www.adash.com nebo napište dotaz na email: info@adash.cz

ADASH s.r.o.

Opětovným stiskem Shift se tlačítka změní zpět na číselné. Po zadání správné hodnoty stiskněte OK.

ICP: z	apnuto
Citlivost[mV/g]:	45
Jednotka:	g
Pozice[°]:	nedef
ISO Skupina stroje:	nedef
Typ ložiska:	nedef
Uložit	

Když jsou zadány všechny potřebné hodnoty v menu, pak pomocí šipek zvolte spodní položku **Uložit** a stiskněte tlačítko **OK**. Nebo můžete stisknout tlačítko **Uložit**, potom není nutné volit položku **Uložit**. Pomocí tlačítka **Storno** zavřete menu a žádné změny nebudou uloženy.

V položce **Citlivost** jsme nastavili číselnou hodnotu. Podobným způsobem zadáte i text (např.jméno sestavy). Na tlačítkách se objeví písmena místo číslic. Na každém tlačítku je více písmen a volí se opakovaným stlačením stejně jako na mobilním telefonu.

Více násobný výběr položek (multi výběr)

V některých menu je užitečné vybrat více položek najednou a pak provést jednu akci pro všechny najednou (např.smazání).

Tlačítko **Multi vypnuto** nebo **Multi zapnuto** ukazuje jaký mód je právě aktivní. Stiskem tlačítka se mód mění. Pokud je Multi vypnuto, pak se pomocí šipek nahoru/dolů pohybuje v menu a vybrána je vždy pouze jedna položka. Další funkce jsou pak prováděny pouze na ní. Pokud je Multi zapnuto, pak při pohybu v menu se jednotlivé položka aktivují (tzn.předtím byly neaktivní) a zbarví se červeně. Pokud šipkami vybereme již aktivní položku, pak se zneaktivní a zbarví černě. Tlačítko **Storno** zruší všechny aktivace.

Pokud je v místě výběru (modrý obdélník) jméno zbarveno žlutě, pak je neaktivní (černá barva v modrém poli by nebyla čitelná)

Vyhledání položky v seznamu

V některých případech je seznam položek příliš dlouhý. Pro rychlejší vyhledání položky v dlouhém seznamu slouží tlačítko **Najdi**. Po stisknutí tlačítka **Najdi** se zobrazí dialog pro vyhledání položky, do kterého zadáte název (stačí začátek názvu) položky a po potvrzení dialogu bude položka zadaného názvu označena.

Signálové a spouštěcí konektory

Vstupy do přístroje jsou na horní straně. Vstupy označené **IN1**, **IN2**, **IN3**, **IN4** jsou používány pro AC (střídavé) a DC (stejnosměrné) signály. Vstup označený **TRIG** slouží pro spouštěcí signál, obvykle je to otáčková sonda. Všechny zásuvky mají několik pinů, které umožňují připojit více signálů najednou do jednoho vstupního konektoru. V AC vstupech lze měřit napětí +/-12V (P-P, špička-špička). V DC vstupech lze měřit napětí +/- 24V.

Rozmístění konektorů na novější verzi A4400 Va4 Pro II (od roku 2018).

Konektor IN1

1 – AC1

2 – UZEMĚNÍ

- 3 +20V DC VÝSTUP (max 10mA) pro případné napájení snímače
- 4 STÍNĚNÍ
- 5 NEPŘIPOJENO
- 6 DC1

7 – +5 V DC VÝSTUP (max 50 mA) pro napájení snímače ultrazvuku

Pozor! Pin 7 konektoru IN1 (napájení snímače ultrazvuku) je vnitřně propojen s pinem 4 konektoru TRIG (napájení tacho sondy)

ADASH s.r.o. Konektor IN2

- 1 AC2
- 2 UZEMĚNÍ
- 3 AC1
- 4 STÍNĚNÍ
- 5 AC3
- 6 DC2 7 – AC4
- 7 AC

Povšimněte si, že na IN2 lze připojit najednou všechny AC kanály.

- 1 AC3
- 2 UZEMĚNÍ
- 3 DC1
- 4 STÍNĚNÍ 5 – DC4
- 6 DC4
- 7 DC2

Povšimněte si, že na IN3 lze připojit najednou všechny DC kanály.

Konektor IN4

- 1 AC4
- 2 UZEMĚNÍ

3 – +20V DC VÝSTUP (max 10mA) pro případné napájení snímače

ADASH s.r.o. 4 – STÍNĚNÍ 5 – NEPŘIPOJENO 6 – DC4 7 – NEPŘIPOJENO

Konektor TRIG

1 – UZEMĚNÍ

2 – NEPŘIPOJENO

3 – NEPŘIPOJENO

4 – +5 V DC max 50 mA pro napájení snímače otáček (tacho)

Pozor! Pin 7 konektoru IN1 (napájení snímače ultrazvuku) je vnitřně propojen s pinem 4 konektoru TRIG (napájení tacho sondy)

5 – TRIG vstup pro externí signál nebo signál ze snímače otáček

Standardní zapojení kabelu pro snímač

Standardní kabel (který je součástí přístroje) má připojen signál ze snímače na pin č.1 a uzemnění na pin č.2. Při použití tohoto kabelu ve vstupu:

IN1 bude signál měřen na CH1,

IN2 bude signál měřen na CH2,

IN3 bude signál měřen na CH3,

IN4 bude signál měřen na CH4.

Při použítí tří osého snímač lze využít vstup IN2 (piny 3,1,5) a uzemnění (pin 2). Pro takové zapojení je potřeba speciálního kabelu.

Varianta ODU

Konektor IN1

- 1 GND
- 2 +5V/0.1A 3 - **DC1**
- 3 DC 4 – NC
- 5 SHLD
- 6 +20V/5mA
- 7 **GND**
- 8 **AC1**

Pozor! Pin 2 konektoru IN1 (napájení snímače ultrazvuku) je vnitřně propojen s pinem 2 konektoru TRIG (napájení tacho sondy).

- 1 GND
- 2 AC4
- 3 **DC2**
- 4 AC3
- 5 SHLD
- 6 AC1 7 – **GND**
- 7 GND 8 – AC2

Povšimněte si, že na IN2 lze připojit najednou všechny AC kanály.

Konektor IN3

- 1 GND
- 2 DC2
- 3 **DC3** 4 – DC4
- 5 SHLD
- 6 DC1
- 7 **GND**
- 8 AC3

Povšimněte si, že na IN3 lze připojit najednou všechny DC kanály.

8 – **AC4**

Konektor TRIG

- 1 TRIG
- 2-+5V/0.1A
- 3 SHLD
- 4 GND
- 5 GND

Pozor! Pin 2 konektoru IN1 (napájení snímače ultrazvuku) je vnitřně propojen s pinem 2 konektoru TRIG (napájení tacho sondy)

<u> A4409 - BNC Box</u>

VA4 Signal box umožňuje jednoduché propojení více kabelů s přístrojem VA4Pro. BNC vstupy na horní straně, slouží k připojení 4 AC a 4 DC kanálů. Na bočním panelu jsou dva výstupní Binder konektory, které slouží k propojení 4 AC kanálů do vstupu IN2 a 4 DC kanálů do vstupu IN3 (přístroje VA4Pro). Viz. předešlá kapitola o zapojení IN2 a IN3. Do vstupu IN2 můžou být zapojeny všechny 4 AC kanály a do IN3 všechny 4 DC kanály.

<u>Vlastnosti snímačů</u>

Ve většině případů měření či nastavování najdete ve spodní řadě tlačítko Snímače, které je určeno pro nastavení vlastností připojených snímačů.

Pro každý AC vstup může být kromě snímače definováno i ložisko a nastavení ISO 10816.

Stiskněte tlačítko Snímače. V menu zvolte vstup, na kterém chcete zadávat vlastnosti snímače.

jednotlivé nastavení vlastností AC vstupu (snímač, iso, ložisko) AC1 - AC4Všechny AC snímače nastavení vlastností snímačů všech AC vstupů najednou Všechna ložiska nastavení stejného ložiska pro všechny AC vstupy najednou Všechna ISO nastavení stejné ISO 10816 skupiny pro všechny AC vstupy najednou jednotlivé nastavení vlastností DC vstupu DC1 - DC4Všechny DC snímače nastavení vlastností snímačů všech DC vstupů najednou Tacho nastavení vlastností tacho vstupu Prodloužení ustálení prodloužení prodlevy před začátkem měření (pokud potřebujete delší čas pro ustálení signálu)

Vlastnosti AC snímačů

Vstupy AC jsou určeny pro měření střídavého napětí. Takový signál dostáváme např. ze snímačů vibrací.

ICP:	zapnuto
Citlivost[mV/g]:	100
Jednotka:	g
Název:	nedef
Pozice[°]:	nedef
ISO Skupina stroje:	nedef
Typ ložiska:	nedef
Uložit	

ICP zapnuto, vypnuto

Volba napájení snímače ICP

Citlivost [mV/jednotka]

1,10,100, jiná Citlivost snímače v mV na zvolenou jednotku ADASH s.r.o. Jednotka Volba jednotky dle typu snímače

Název nedef, uživatel

Volitelně můžete zadat název snímače pomocí volby uživatel. Volbou nedef jméno zrušíte.

Uložení snímače

Parametry pojmenovaného snímače můžete uložit. Po zadání názvu otevřete znovu menu **Název.** Nyní je dostupná nová položka **ulož**. Volbou této položky uložíte parametry snímače.

ICP:	zapnuto	
Citlivost[mV/g]:	100	
Jednotka:	g	
Název:	acc100	nedef
Pozice[°]:	nedef	uživatel
ISO Skupina stroje:	nedef	uložit
Typ ložiska:	nedef	
Uložit		

Poznámka! Jestliže chcete uložit snímač s názvem, který je již použitý, budete dotázáni, zda chcete parametry přepsat.

Snímač "acc100" je již definován. Přepsat jeho parametry?

Načtení snímače

Uložené snímače jsou zobrazeny, když otevřete položku **Název**. Jestliže vyberete jméno uloženého snímače, jeho parametry budou načteny.

ICP:	zapnuto	
Citlivost[mV/g]:	100	
Jednotka:	g	
Název:	nedef	nedef
Pozice[°]:	nedef	acc100
ISO Skupina stroje:	nedef	acc500
Typ ložiska:	nedef	geofon
Uložit		uživatel

Poznámka! Jestliže zvolíte volbu "**uživatel"** a zadáte již použitý název (např. "acc500"), budete dotázáni, zda chcete parametry načíst.

Snímač "acc500" je již definován. Načíst jeho parametry?

Mazání uložených snímačů

Vyberte ze seznamu snímač, který chcete smazat. Znovu otevřete menu **Název**, kde přibyla položka **smazat**. Zvolte tuto položku. Snímač bude odstraněn ze seznamu.

ICP:	zapnuto	
Citlivost[mV/g]:	100	
Jednotka:	g	
Název:	acc100	nedef
Pozice[°]:	nedef	acc100
ISO Skupina stroje:	nedef	acc500
Typ ložiska:	nedef	geofon
Uložit		uživatel
		smazat

Pozice

Montážní úhel snímače (viz.obrázek dole). Obvykle se používá u bezkontaktních snímačů posunutí.

Adash 4400 - VA4Pro (II)

DC gap kanál

V případě snímače posunutí (bezkontaktní snímač na bázi vířivých proudů - eddy current) lze zadat i příslušný DC vstup, který se použije pro měření stejnosměrné složky vibrací (gap). Hodnota gap se ukládá v měření časového signálu a orbity. Signál je zobrazen posunutý o tuto složku.

ISO Skupina stroje

Definice skupiny dle normy ISO 10816

Typ ložiska

Typ ložiska

Nastavení skupiny dle ISO 10816

Nastavení skupiny dle ISO 10816 může být provedeno pro každý kanál zvlášť spolu s nastavením snímače (menu AC1 – AC4) nebo pro všechny vstupy společně (menu Všechna ISO)

ISO Skupina stroje: 1
ISO Uložení stroje: tuhé
Uložit

Definice skupina a uložení dle normy ISO 10816. Slouží k určení limitních hodnot a použití barevné indikace zelená/oranžová/červená.

Nastavení ložiska

Ve spektrech mohou být zobrazeny také poruchové frekvence ložiska. Je nutné vybrat požadované ložisko z databáze nebo definovat jeho parametry (rozměry) ručně.

Vyberte **Typ ložiska** a stiskněte tlačítko **OK** nebo stiskněte šipku doprava. Zobrazí se tři možnosti definice ložiska a seznam naposledy vybraných ložisek.

Typ ložiska:	6205	databáze
Rotující kroužek: 🕚	∨nitřní	uži∨atelské
Uložit		nedef
		6205
		22228(18)-SKF
		3202

Typ ložiska

ADASH s.r.o. databáze	výběr z databáze	
Typ ložiska		
NÚ		
NNU6940-SKF NNU6940V-SKF NP23-SEA NP31-SEA NP32T-SEA		1
NU10-500-NTN		
NU10/500 NU10/500-NTN NU10/500-SKF NU10/530 NU10/530-SKF		
NU10/560-SKE		
NU10/600MA		
NU10/600MA-SKF		
NU1005 NU1005-KOY		•

Zadejte jméno (nebo jen úvodní část) a použijte šipky nahoru/dolů pro výběr ze seznamu. Pokud nejsou tlačítka šipek zobrazeny, použijte tlačítko **Shift**. Potvrďte **OK**.

uživatelské	
Typ ložiska:	uživatelské
Rotující kroužek:	∨nitřní
Počet kuliček:	0
Průměr kuličky[in]	: 0
Roztečný průměr	ložiska[in]: 0
Kontaktní úhel[°]:	+0.0
Uložit	

Pokud požadované ložiska není obsaženo v databázi, lze jeho parametry zadat ručně.

žádné žádné ložisko není vybráno, poruchové frekvence nebudou zobrazeny

Rotující kroužek pro správný výpočet poruchových frekvencí je potřeba určit, který kroužek rotuje.

Vlastnosti DC snímačů

Vstupy DC jsou určeny pro měření stejnosměrného napětí. Takový signál dostáváme např. ze snímačů teploty, tlaku apod.

Citlivost[mV/	µm]: -8
Offset[mV]:	-8000
Jednotka:	μm
Pozice[°]:	45
Uložit	

Citlivost[mV/jednotka]	1,10,100, jiná citlivost snímače v mV na zvolenou jednotku
Offset[mV]	offset (stejnosměrné posunutí)
Jednotka	volba jednotky dle typu snímače
Název	můžete zadat název snímače (viz kapitola AC snímače)
Pozice	Montážní úhel snímače. Obvykle se používá u bezkontaktních snímačů posunutí (GAP měření).

Vzorec použitý pro přepočet: hodnota = (vstupní hodnota v mV - Offset) / Citlivost.

Vlastnosti Tacho snímače

Vstup tacho slouží k měření otáček. Pulsy z tacho sondy se používají jako zdroj spouštění měření. VA4 používá pro trigr sestupnou hranu tacho signálu (tzn. konec tacho značky).

Adash 4400 – VA4Pro (II)

ADASH s.r.o.

Uroveň signálu spouštění[\	/]: 1
Počet pulzů na otáčku:	1
Minimální otáčky [Hz]:	0.5
Uložit	

Úroveň signálu spouštění Pro správné vyhodnocení pulsů z tacho snímače je potřeba nastavit vhodnou porovnávací (komparační, překlápěcí) úroveň. Např. pokud dostáváte z tacho snímače hodnotu 0,5V, která se při pulsu zvýší na 2V, pak úroveň spouštění 1V bude spolehlivě nacházet pulsy. Záporné hodnoty pulsů nejsou povoleny. Pro jejich zpracování je potřeba použít konvertor Adash.

Počet pulzů na otáčku Pokud je během jedné otáčky vytvořeno více pulsů z otáčkové sondy, pak tato hodnota musí být zadána aby otáčky byly počítány správně. V případě více pulsů na otáčku nelze použít tacho spouštění.

Minimální otáčky [Hz] Nejnižší hodnota otáček, která uživatele zajímá. Otáčky nižší než tato hodnota nebudou rozpoznány. Předpokládejme jeden pulz na otáčku. Potom převrácená hodnota minimálních otáček udává, jak dlouho přístroj čeká na příchod tacho pulzu než ohlásí chybu otáček (hodnota otáček je vypočtena z doby mezi dvěma pulzy).

Jsou-li otáčky stroje nižší než Minimální otáčky, nenastane událost tacho trigr.

Pozor! Snížením hodnoty minimálních otáček prodloužíte dobu, která je potřebná pro zjištění nepřítomnosti tacho značek (při výpadku tacho sondy).

Prodloužení ustálení

Někdy můžete potřebovat delší čas pro ustálení snímačů. Zadejte požadovaný čas v sekundách.

Vlastnosti snímačů uložené v záznamu

Záznamem rozumíme nahrávku, kterou jsme nahráli v módu **Recorder**. Před nahráváním je nutno vždy správně nastavit vlastnosti snímačů, které pro záznam jsou použity.

Když je záznam podroben analýze v módu Analyzátor, lze použít vlastnosti snímačů již nastavené a uložené v záznamu. Může se stát, že potřebujeme nastavit při analýze vlastnosti jiné. Taková změna je povolena jen pro zpracování. Původní v záznamu uložené vlastnosti nebudou přepsány.

Nové hodnoty budou použity pouze pro analýzu. V záznamu nebude nic přepsáno.

<u>Global vlastnosti</u>

Parametry, které mají pro funkce přístroje zásadní vliv, jsou přístupné pomocí tlačítka **Nastavit**. V následujícím seznamu jsou nastavení rozdělena do několika skupin.

 Nastavení trigru

 Globální nastavení

 Vzhled

 Rozběh

 Nastavení spekter

 Datum/Čas

 Nastavení uživatelských poznámek

 Profil

 O přístroji

 Nápověda

 Screenshot

 Jas

 Vypnout

 Zdroj signálu = 3-OSY SNIMAC

Vypnout

Alternativní vypnutí přístroje.

Jas

Nastavení jasu obrazovky (pouze pro přístroje vyrobené po listopadu 2013).

Screenshot

Screenshot v png formátu bude uložen do adresáře images na VA4_DISC.

Exportovat vše

Export všech neexportovaných projektů z modulů Analyzér, Pochůzka a Rozběh.

O přístroji ...

Verze:	0275
Licence:	000000
Vytvoření:	11.01.2021 07:30:00
Instalace:	11.01.2021 07:32:00
Kapacita disku:	57.1GB
Využité místo:	10.5GB (18.4%)
Volné místo:	40.6GB (81.6%)
VA5_DISC Volné místo:	95.0%
Baterie:	98%

Jedná se o jednoduché okno se základními informacemi o verzi firmwaru apod.

Nastavení trigru

Zde se nastaví parametry pro spouštění měření. Trigger je v překladu spoušť.

Režim trigru v analyzátoru jedno měření <u>retrig</u>	pro moduly analyzátor a oktávová analýza provede se pouze jedno měření všech grafů v sestavě měření jsou opakována tak dlouho, dokud není stisknuto tlačítko Stop .
Režim trigru v rozběhu bude měřit)	pro modul rozběh, nastavení, jak bude řízeno měření při rozběhu (tzn. kdy se
bez řízení	Měření následují bez prodlevy ihned po sobě.
ručně	Každé další měření je spuštěno uživatelem ručně (stiskem tlačítka Start).
změnou otáček větší hodnotu, než je nastaveno	Další měření se spustí, když se otáčky oproti předchozímu měření změní o o v parametru Změna otáček .
časový interval	Všechna měření jsou prováděna se stejným časovým odstupem Časový
interval.	
čas nebo otáčky (podle toho co nastane dříve).	Další měření se spustí se změnou otáček nebo po uplynutí časového intervalu
Změna otáček	viz. Rozběh - mód: změnou otáček (předchozí odstavec)
Casový interval	viz. Rozběh - mód: časový interval (předchozí odstavec)
Poznámka! Když proces očeká	vá retrig událost (typ události je definován parametrem Rozběh-mód), objeví se
okno Cekání na retrig. Text v o	okně oznamuje, na jakou událost se čeká.

Čekání na ruční retrig Stiskni enter pro retrig

Čekání na časový nebo otáčkový retrig 10 s nebo 1.00 Hz

Minimální otáčky rozběhu, Maximální otáčky rozběhu nedef, uživatel

Měření v rozběhu proběhne pouze jsou-li aktuální otáčky vyšší než Minimální otáčky rozběhu (je-li definováno) a nižší než Maximální otáčky rozběhu (je-li definováno). Jestliže podmínka není splněna, neprobíhá měření a objeví se okno "Čekání na otáčky rozběhu" s limitními hodnotami v poznámce.

Poznámka! Můžete definovat obě nebo pouze jednu z hodnot.

Na následujících obrázcích můžete posoudit rozdíl mezi nedefinovanými hodnotami otáček rozběhu (obrázek vlevo) a otáčkami rozběhu nastavennými na 20 Hz a 50 Hz (obrázek vpravo). Jak vidíte, na obrázku vpravo chybí hodnoty větší než 50 Hz a menší než 20 Hz. Příklad ukazuje hodnoty rychlosti, ale hodnotami rychlosti jsou řízeny všechny datové typy.

Zdroj trigru: Každé měření musí být spuštěno. Po stisknutí tlačítka Start se nastaví všechny parametry měření a poté se čeká na událost nastavenou v Zdroj trigru, která měření spustí.

V případě měření rozběhu je nejdříve četnost měření řízena parametrem Rozběh - mód a následně je až každé měření spuštěno podle parametru Zdroj trigru.

volně (bez trigru) Měření se spustí ihned po nastavení parametrů. Na žádnou další událost se nečeká.

externí Měření se spustí, když se na TRIG vstupu objeví napětí vyšší než je nastaveno parametrem Úroveň signálu externího trigru. Může se jednat např. o TTL signál, který se objeví při spuštění stroje.

Měření se spustí po stisku tlačítka Start. Pamatujte, že toto tlačítko se tak musí ruční stisknout dvakrát. Poprvé spustí přípravu měření a podruhé skutečné měření.

ruční sekvenční Stejné jako ruční. Čeká na stisknutí tlačítka mezi jednotlivými průměry. Například, když je použito 10 průměřování, pak tlačítko START musí být zmáčknuto 10 krát.

amplituda Měření se spustí, když se na zvoleném signálovém vstupu (Kanál amplitudového trigru) objeví napětí vyšší než je nastaveno parametru Úroveň signálu amplitudového trigru. Používá se vstupní nikterak upravený signál. Příkladv:

úroveň je nastavena na 100mV - měření se spustí když se signál změní např. z 99mV na 101mV úroveň je nastavena na -100mV - měření se spustí když se signál změní např. z -99mV na -101mV

Měření se spustí, když se na TRIG vstupu objeví napětí vyšší než je nastaveno v tacho tacho snímači (parametr Úroveň signálu tacho trigru). Tacho je speciální případ externího spouštění. Pokud mluvíme o tacho snímači, pak je myšlen snímač otáčení hřídeli, který jednou za každou otáčku vygeneruje napěťový puls. Při průměrování je tacho spouštění vyžadováno pro každý záznam (na rozdíl od externího, kdy je vyžadováno pouze na začátku a průměry se již načítají volně bez trigru). Některá měření (otáčky, aps, řádová analýza,...) nelze bez nastavení spouštění na tacho vůbec spustit.

Poznámka! Jestliže nenastává spouštěcí událost, objeví se okno Čekání na trigr. Text v okně oznamuje, na iakou událost se čeká.

Čekání na externí trigger

Čekání na amplitudový trigger 3g/AC1

Čekání na ruční trigger Stiskni enter pro trigger

Použít ampl tacho ano, ne

Je-li nastaveno ano, pak budou tacho značky v datech generovány jako amplitudový triggr namísto z tacho vstupu. Kanál a úroveň spouštění je volen stejně jako pro amplitudový trigr. Abyste předešli vygenerování mnoha značek blízko sebe, nastavte vhodnou úroveň hystereze (Ampl tacho hystereze). Hodnota signálu se musí vrátit zpět o hodnotu hystereze než je povoleno vygenerovat další značku. Příklad různého nastavení hystereze je na následujících obrázcích. Na levém obrázku je nastavená úroveň spouštění 50 um a hystereze 1um. Signál ale kolem spouštěcí úrovně osciluje, proto je vygenerováno mnoho značek. Na obrázku vpravo je nastavená úroveň hystereze 30 um. Předtím než je povoleno vygenerovat novou značku, musí signál klesnout pod úroveň 50 – 30 = 20 um. Proto bude následující značka vygenerována až při příští periodě.

Kanál amplitudového trigru (1,2,3,4)

volba vstupu pro spuštění amplituda.

Úroveň signálu amplitudového trigru

viz. Zdroj trigru nastaveno na amplituda.

viz Použít ampl tacho Ampl tacho hysterze

Negativní průměrování

ano, ne

Negativní průměrování je dostupné pouze s amplitudovým trigrem. Je-li zapnuto, pak je na začátku měřícího procesu ihned po inicializaci přístroje změřeno referenční spektrum. Toto spektrum je zapamatováno a pak odečítáno od každého vypočítaného spektra. To může být užitečné při provádění bump testu na točivých strojích. Během inicializace negativního průměrování nedělejte žádné údery. Počkejte až zmizí okno.

Inicializace negativního průměrování Nedělejte údery!

Podívejte se na následující příklad. Na prvním obrázku je spektrum úderu uskutečněném na zastaveném stroji. Je použito exponenciální okno.

Další obrázek znázorňuje úder na běžícím stroji. Vidíte velkou špičku poblíž 50 Hz.

Díky použití negativního průměrování můžete eliminovat nežádoucí špičky ze spektra, které jsou způsobeny tím, že stroj běží a ne samotným úderem.

Poznámka! Abyste dosáhli co nejlepších výsledků, použijte při negativním průměrování také průměrování spektra (tzn. více úderů).

Hrana externího trigru náběžná, sestupná definuje jakou hranou bude spuštěno měření

Úroveň signálu externího trigru [V] viz Zdroj trigru nastaveno na externí

Pretrig (%) Okamžik příchodu události, která spustila měření nemusí být umístěna na počátek časového signálu, který se pak použije pro všechny další výpočty. Pokud provádíme rázový (bump) test (určení rezonanční frekvence úderem kladiva do konstrukce), pak je užitečné mít ráz zobrazen nikoliv přímo na počátku signálu, ale s jistým odstupem. Ten se definuje v %. Jestliže má časový signál délku 1sec a pretrig je 25%, pak bude okamžik spuštění (tzn. třeba úder kladivem) v čase 250 ms. Pokud je zadána záporná hodnota, pak okamžik spuštění vůbec není v časovém signálu, protože nastal před začátkem měření.

ADASH s.r.o. Global Nastavení

Zobrazení výsledků při pochůzce:	zapnuto	
Aut. ukládání v pochůzce:	zapnuto	
Aut. skok v pochůzce:	vypnuto	
Kontrola snímačů v pochůzce:	ano	
Zobrazení malých hodnot:	vypnuto	
Zastav při chybě ICP:	vypnuto	
Jednotky:	metrické	
Jednotka frekvence:	Hz	
Jednotka otáček:	Hz	
Frekvence el. sítě[Hz]:	nedef	
Rozsah fáze: -1	80°;180°	
Počet zobrazených spekter v kaskádě: 32		
Formát data: d	d.mm.rrrr	
Jazyk:	CZE	
Sjednocení grafů:	zapnuto	
Mřížka grafů:	zapnuto	
Typ kurzoru:	lineární	
Rychlost analýzy záznamu: v reálr	iém čase	
Start analýzy záznamu: po	okračovat	
Uložit		

Podtržené položky jsou výchozí hodnoty (tovární nastavení).

Zobrazení výsledků při pochůzce <u>zapnuto</u>, vypnuto Pokud chcete při měření pochůzky postupovat rychleji a nechcete zobrazit výsledky měření, pak nastavte vypnuto.

Aut. ukládání v pochůzce <u>zapnuto</u>, vypnuto Pokud je nastaveno zapnuto, jsou výsledky měření ukládány automaticky. Při nastavení vypnuto musí uživatel výsledky uložit stiskem tlačítka **Uložit**.

Aut. skok v pochůzce zapnuto, vypnuto

Po uložení dat automaticky zobrazí seznam měřících míst a označí následující místo. Skok nastane jen jsou-li odměřena a uložena data všech měření.

Kontrola snímače v pochůzce <u>ano</u>, ne

Kontroluje rozdíl v nastavení snímačů (měřící bod vs. přístroj) po otevření měřícího bodu pochůzky. Pokud je nalezen rozdíl, zobrazí se okno **Použitý snímač**.

Použitý snímač na AC1: 100 mV / g, ICP zapnuto

Připojte požadovaný snímač k přístroji a potvrďte. Nastavení snímačů se automaticky uloží do přístroje a už jej nemusíte zadávat. Pokud potřebujete upravit některé hodnoty, můžete to udělat pomocí menu **Snímače**.

V DDS můžete snímači zadat název. Kontrola pojmenovaných snímačů probíhá tak, že se porovnají pouze názvy snímačů. V přístroji pak můžete změnit parametry snímače (např. citlivost) a pokud je v následujícím měřicím bodě nastaven snímač se stejným názvem, bude použitá nová citlivost zadaná v přístroji a okno **Použitý snímač** se neobjeví.

Název snímače je vypsán v okně **Použitý snímač** (zde ACC100).

Použitý snímač ACC100 na AC1: 100 mV / g, ICP zapnuto

Název snímače je taky zobrazen v menu pro nastavení snímače. Tento název nemůžete měnit v přístroji.

Tlačítko START v pochůzce <u>start</u>, start další Volba "start další" umožňuje okamžité zahájení měření na následujícím bodě, jestliže je zobrazen poslední bod, bude otevřen seznam strojů a označen následující stroj

Zobrazení malých hodnot <u>zapnuto</u>, vypnuto Pokud chcete vidět hodnoty menší než 0,001, nastavte zapnout a hodnoty budou zobrazeny v exponenciální formě (např. 5,26E-6). Jinak bude zobrazena nula.

Zpoždění po zapnutí ICP[s] výchozí, jiné časové zpoždění pro ustálení signálu

Zastav při chybě ICP	zapnuto	měření je zastaveno, nastane-li chyba ICP
	<u>vypnuto</u>	měření pokračuje, chyba ICP je pouze informativní

Zastav při chybě ICP	<u>zapnuto,</u> vypnuto	měření měření	bude při detekci chyby ICP okamžitě zastaveno bude pokračovat, chyba ICP je pouze pro informaci	
Jednotky	<u>metrické</u> (m, mm,), imperiální (inch)			
Jednotka frekvence	Hz, RPM, CPS, CPM			
Jednotka otáček	Hz, RPM, CPS, CPM			
Frekvence el. sítě	frekvence elektrické sítě je využita pro výpočet hodnoty Elect v tabulce synch hodnot			
Rozsah fáze	<u>(-180, 180)</u> , (0,	360)	rozsah při zobrazování hodnot fáze	
Počet zobrazených spekter v kaskádě <u>32</u> , , 1024				
Formát data	<u>dd.mm.rrrr</u> rrrr.mm.dd mm/dd/rrrr	pro tent	o formát data je čas zobrazen s a.m./p.m.	
Jazyk	ENG, <u>CZE</u> , FRA	4	volba jazyka.	

Sjednocení grafů zapnuto, <u>vypnuto</u> jestliže je zobrazeno více grafů se stejnou jednotkou na ose X, pak lze zapnout ovládání kurzoru a zoom X na všech grafech najednou.

Mřížka grafů zapnuto, vypnuto

Typ kurzorulineární, maximatato položka musí být vysvětlena podrobněji. Zobrazený graf(např.spektrum) má šířku přibližně 600 bodů obrazovky. Spektrum může mít až 25600 čar, kdy 42 čar jesloučeno do jedné čáry na obrazovce (42=25600/600). Toto číslo se mění podle rozlišení spektra a použitéhozoomu. V prvních verzích přístroje VA4Pro se kurzor pohyboval jen po čarách spektra. Tzn. po 42 stisknutíchšipky doprava (doleva) se kurzor na obrazovce pohnul o jeden bod obrazovky doprava (doleva). To bylonepříjemné. Od verze 2.0 se používá odlišný způsob. Kurzor se pohybuje po bodech obrazovky, nikoliv počarách spektra. Protože v jednom bodu obrazovky je sloučeno několik čar, je potřeba určit, na které jedné určitéčáře bude kurzor umístěn a hodnoty X,Y zobrazeny. Při hodnotě lineární se kurzor posune vždy o pevný početčar, který je roven počtu čar sloučených v jednom bodu obrazovky. Při hodnotě maxima se kurzor umístí nanejvyšší čáru ze všech čar sloučených v jednom bodu obrazovky.

Rychlost analýzy záznamu <u>rychle</u>, v reálném čase záznam může být zpracován dvěma způsoby, co se rychlosti týče. Předpokládejme, že délka záznamu je např. 300 sec. Jedná se o záznam rozběhu. Chceme vyhodnotit průběh APS (amplituda+fáze+otáčky) v průběhu rozběhu. Pokud chceme průběžně sledovat měřené hodnoty na obrazovce, pak zvolíme v reálném čase. Celé měření bude trvat 300 sec, stejně jako skutečný rozběh. Pokud chceme jen uložit hodnoty do paměti bez průběžného sledování, pak zvolíme rychle. Celé měření proběhne mnohem rychleji.

Start analýzy záznamu <u>pokračovat</u>, od začátku, opakovat, zeptat se při opakovaném spouštění měření ze záznamu můžete zvolit, ze kterého místa záznamu začne analýza (tj. kam bude umístěn kurzor záznamu)

pokračovat kurzor záznamu zůstane tam, kde skončila předchozí analýza

od začátku kurzor záznamu se před měřením přesune na začátek záznamu

opakovat kurzor záznamu se vrátí tam, kde začala předchozí analýza záznamu

zeptat se před začátkem měření budete dotázáni, kam přesunout kurzor

Pokud jste před měřením umístili kurzor záznamu ručně, začne analýza záznamu od vámi určeného místa (pak nezáleží na nastavení položky *Start analýzy záznamu*).

Vzhled Barva pozadí: černá Barva textu tlačítek: bílá Uložit

Barva pozadí čern

černá, bílá

nastaví barvy grafů.
Adash 4400 – VA4Pro (II)

Pro nastavení vlastních barev použijte položku **Vytvoř**. Na VA4_DISC bude vytvořen soubor *název.col.cpy*, kde *název* je název aktuálního schématu. Tento soubor můžete editovat (jedná se o textový soubor, ve kterém jsou zadány RGB hodnoty barev). Po editaci přejmenujte soubor na *novýnázev.col*, kde *novýnázev* je název barevného schématu. Po spuštění přístroje, jsou všechna barevná schémata z VA4_DISC přesunuty do přístroje a následně jsou nabízeny v menu Barva pozadí. Tlačítko **Smaž** slouží ke smazání uživatelem vytvořeného barevného schématu

Barva textu tlačítek černá, bílá

Rozběh

Nastavení globálních parametrů pro modul rozběh.

Maximální velikost paměti	[MB]: 1000
Jednotka času:	minuty
Délka[minuty]:	nedef
Časová osa trendu:	relativní
Délka trendu [minuty]:	auto
Uložit	

Maximální velikost paměti[MB] hodnota Jestliže je při ukládání dat během rozběhu překročena tato hodnota, vytvoří se nový trend a data jsou ukládána do nového trendu.

Jednotka času <u>dny</u>, hodiny, minuty Jednotka, ve které je zadán parametr Délka

Délka <u>nedef</u>, hodnota Je-li definována, pak jsou během jednoho měření vytvářeny trendy v zadaném intervalu.

Časová osa trendu relativní, reálný čas Způsob značení osy. Je-li zvolena možnost relativní, je osa značena v časovém intervalu od začátku rozběhu Trend/Historie - 17.04.2010 02:24:10 22m55.000s (1376/2579) 1 RMS ch:1 B:10-1000Hz NS:4096 T:1s 1/1;600RPM mm/s Y=2.79 25 0.0 05m 10m 00m 15m 20m 25m 35m 40m 30m 17.04.2010 02:24:10 17.04.2010 03:07:08 Je-li zvolena možnost reálný čas, je osa značena časovými značkami Trend/Historie - 17.04.2010 02:24:10 17.04.2010 02:47:05 (1376/2579) 1 RMS ch:1 B:10-1000Hz NS:4096 T:1s 1/1;600RPM mm/s 2 F 0.0 02.25 02:30 02:35 02:40 02:45 02:50 02:55 03:00 03:05 17 04 2010 02:24:10 17.04.2010 03:07:08

Délka trendu <u>auto</u>, jiná rozsah časové osy v trendu, je-li pohled trend (Graf vlastnosti / pohled). Je-li nastaveno auto, je zobrazen celý trend.

Spektrum nastavení

Tohle je standardní nastavení, použito pro grafy.

Hodnota:	RMS
Osa X:	lin
Osa Y:	lin
Seznam špiček:	vypnuto
Čáry grafu:	spojité
Uložit	

Hodnota

<u>RMS, </u>0-P, P-P

typ hodnoty na Y ose

Adash 4400 – VA4Pro (II)

Výchozí typ amplitud spekter. Tato výchozí hodnota je použita v různých situacích a obvykle může býť předefinována. Např. graf spektra v modulu analyzátor používá tento typ, ale můžete zadat jiný pro konkrétní graf v nastavení **Vlastnosti grafu**.

Osa X	<u>lin</u> , log	lineární	nebo logaritmické měřítko X
Osa Y	<u>lin</u> , log	lineární	nebo logaritmické měřítko Y
Seznam špiček	zapnuto, <u>vypn</u>	<u>uto</u>	textový výpis nejvyšších špiček ve spektru

Délka trendu <u>auto</u>, hodnota Použito pro měření Rozběhu/doběhu a pro Graf / Valstnosti / Zobraz trend. auto: zobrazí všechna data v trendu

Čáry grafu <u>spojité</u>, diskrétní Spektrum může být vykresleno jako spojitá linka vrcholků čar, nebo diskrétní vertikální čáry jednotlivých frekvencí.

Datum/ Č	as
Rok: 2	013
Měsíc:	07
Den:	22
Hodina:	15
Minuta:	11
Sekunda:	13
Uložit	

Nastavení aktuálních hodnot.

Nastavení uživatelských poznámek

Během měření pochůzky lze přidávat krátké poznámky ke každému měřícímu bodu. Existují tří možnosti, jak editovat poznámky.

1. Zadat text poznámky ručně.

- 2. Vybrat text poznámky ze seznamu Tovární poznámky
- 3. Vybrat text poznámky ze seznamu Uživatelské poznámky

Zde popíšeme, jak vytvořit seznam **Uživatelské poznámky**. Stiskněte tlačítko **Nastavit** a zvolte **Uživatelské poznámky**. Zobrazí se dialog pro editaci uživatelských poznámek.

V horní polovině je seznam uživatelských poznámek (zatím prázdný) a dole jsou předdefinované tovární poznámky. Pomocí šipek označte poznámku, kterou chcete přidat. Stiskem tlačítka **Vyber** přidáte označenou poznámku ze seznamu továrních poznámek do seznamu uživatelských poznámek. Stiskem tlačítka **Uprav text**

přejdete na ruční editaci textu poznámek. Stiskem tlačítka **Uložit** uložíte vytvořený seznam uživatelských poznámek a zavřete dialog.

Profil

Vyvolá dialog pro uložení nastavení do profilu a načtení nastavení z profilu. Pomocí profilu můžete jednoduše ukládat a načítat veškeré nastavení přístroje (nastavení snímačů, globální nastavení ...).

Ulož nastavení jako acc_sensors Ulož nastavení jako nový profil Tovární nastavení acc_sensors proximity_sensors

Ulož nastavení jako název uloží aktuální nastavení do profilu, který byl naposledy načtený (pokud není naposledy načtený profil tovární nastavení)

Ulož nastavení jako nový profil uloží aktuální nastavení jako nový profil (po zadání názvu nového profilu)

Tovární nastavení načte původní tovární nastavení

Ostatní položky načte dříve uložené profily

Tlačítkem Smazat odstraníte označený profil.

Zdroj signálu

Přímé vstupy přístroje Centerline Centerline2 DC Default Rec Doběh převodovky Doběh turbíny EIMg_nevývaha FRESP LOZISKO NEVYVAHA Rozběh Rozběh turbíny

Přístroj může měřit buď signál, který je na jeho vstupech (**Přímé vstupy přístroje**) nebo z uložených záznamů (pořízených v módu **Recorder**). Jejich seznam je pod první položkou **Přímé vstupy přístroje**. Zvolte zdroj signálu potvrďte **OK**. Zvolený zdroj se objeví i v nabídce **Nastavit**.

Pokud pracujete s programem A4410 Virtální jednotkou na počítači, pak je nutné použít záznam.

<u>Hlavní obrazovka</u>

Po zapnutí se zobrazí hlavní obrazovka. Pomocí šipek vyberte požadovaný mód.

Update software v přístroji

Nejnovější software do přístroje si vždy můžete stáhnout z www.adash.cz, sekce Ke stažení, sekce A4400-VA4Pro.

- 1. Připojte přístroj k počítači. Pamatujte si, že musí být vypnutý.
- 2. Spusťte Explorer nebo jiný software, který se používáte pro kopírování souborů.

3. Zkopírujte aktualizační soubor z počítače na VA4_DISC.

- 4. Použijte funkci Bezpečně odebrat hardware a odpojte přístroj od počítače.
- 5. Zapněte přístroj na úvodní obrazovku.
- 6. Stiskněte tlačítko Update.
- 7. Vyberte požadovaný aktualizační soubor ze seznamu (do přístroje je možné uložit více verzí). Stiskněte tlačítko OK.
- 8. Úvodní okno se zavře. Postup aktualizace je popsán v novém příkazovém okně.
- 9. Po aktualizaci se úvodní obrazovka objeví znovu.

Update databáze ložisek

Databázi ložisek si stáhněte ze stránek Adash Adash/ Ke Stažení/ Software Adash. Databáze ložisek je v sekci A4400 - VA4Pro. Název souboru je **bdx01.va4**.

- 1. Připojte přístroj k počítači. Pamatujte si, že musí být vypnutý.
- 2. Spusťte Explorer nebo jiný software, který se používáte pro kopírování souborů.
- 3. Zkopírujte aktualizační soubor z počítače na VA4_DISC.
- 4. Použijte funkci Bezpečně odebrat hardware a odpojte přístroj od počítače.
- 5. Zapněte přístroj. Databáze je připravena k použití

Stav nabití baterie

V pravém spodním rohu obrazovky je zobrazen údaj o procentuálním zbytku nabití baterie. Pokud je větší než 30%, je ukazatel zelený. Pokud je 10-30%, je žlutý. Pod 10% je červený. Pod 6% začne blikat a zastaví se měření. Pod 3% se přístroj sám vypne.

<u>Tlačítka</u>

Patnáct tlačítek okolo obrazovky se používá k ovládání přístroje. Vedle každého tlačítka se vždy zobrazí jeho aktuální funkce. Tento univerzální přístup dovolí použít každé tlačítka pro více funkcí.

Řízení a Menu

Tlačítka pro řízení jsou vždy po stranách obrazovky. Tlačítka pro vyvolání nabídek Menu jsou pod obrazovkou.

Tlačítko Shift

Tlačítko **Shift** přepíná funkce řídících tlačítek. Obvykle mění malá/velká písmena a významy šipek (pohyb kurzoru, zoom, posun)

<u>Detekce otáček</u>

V některých situacích je potřeba znát otáčky měřeného stroje. Zde bude popsáno, jak probíhá detekce otáček. V dalším textu bude na tuto kapitolu odkazováno.

Detekce probíhá před samotným měřením po stisku tlačítka **Start**. V průběhu detekce je zobrazeno informační okno v pravém dolním rohu.

Pokud je zjištěno, že je k přístroji připojena otáčková (tacho) sonda, nebude další vyhodnocení probíhat, otáčky budou měřeny z otáčkové sondy.

Na základě vyhodnocení spektra signálu je nabídnuto několik hodnot otáček. Spolu se seznamem hodnot je zobrazeno i spektrum. V seznamu jsou zobrazeny pouze frekvence s významnou hodnotou amplitudy. Hodnoty jsou seřazeny od nejvyšší amplitudy. Vyberte hodnotu z nabídky a potvrďte tlačítkem **OK**.

Pokud nevyhovuje žádná hodnota ze seznamu, můžete zadat hodnotu ručně. Označte položku **zadat ručně** a stiskněte **OK**. Zobrazí se dialog pro ruční zadání otáček. Zadejte hodnotu otáček a potvrďte **OK**. Jestliže nezadáte žádnou hodnotu a stisknete **OK**, otáčky zůstanou nedefinovány a měření budou probíhat bez definovaných otáček.

Zadej otáčky [Hz]

Otáčky mohou být detekovány pouze z kanálu se snímačem vibrací. Jestliže měření není definováno na kanálu se snímačem vibrací, bude zobrazena chybová hláška. a po potvrzení bude zobrazen dialog pro ruční zadání otáček.

Otáčky nemohly být detekovány Nevhodný snímač

Jestliže měření skončí chybou, bude zobrazena chybová hláška. a po potvrzení bude zobrazen dialog pro ruční zadání otáček.

Otáčky nemohly být detekovány Chyba ICP

Adash 4400 – VA4Pro (II)

Jestliže je detekována hodnota otáček, bude se automaticky ukládat do hlavičky dat následujícího měření stejně jako hodnota změřená z otáčkové (tacho) sondy. Jestliže jsou otáčky zároveň měřeny tacho sondou, budou mít při ukládání přednost.

Analyzátor

Analyzátor je základní mód pro analýzu signálu. Umožňuje ruční nastavení všech parametrů měření. Taková nastavení je možné uložit do paměti a používat je opakovaně.

Měření

Pod pojmem **Měření** chápeme proces vyhodnocení při nastavených parametrech. Příklady **Měření**: spektrum, časový signál, širokopásmová hodnota apod.

Graf

pod pojmem **Graf** chápeme zobrazení výsledku jednoho měření na obrazovce. Také zobrazení čísla jako výsledku např. širokopásmové hodnoty je **Graf**.

Sestava

Sestava je jedním z nejdůležitějších pojmů v terminologii používané v přístroji. Je to skupina obsahující více Měření (nebo také jen jedno), které se měří najednou. Tzn. jejich **Grafy** jsou zobrazeny najednou na obrazovce (jedné či více). Např. pokud chcete najednou měřit širokopásmové hodnoty zrychlení a rychlosti společně se spektrem a časovým signálem rychlosti, pak si předem připravíte **Sestavu**, která obsahuje tato 4 měření. Takto vytvořenou **Sestavu** si můžete i uložit do paměti přístroje. Jestliže ji spustíte, budou simultánně provedena všechna 4 vyhodnocení a zobrazeny jejich grafy na jedné obrazovce. Další informace najdete v kapitole **Virtuální analyzátory pro jednu úlohu**.

Projekt

Můžete uložit různé Sestavy do paměti. Mnohdy je potřeba vytvořit vyšší struktury, které následně obsahují Sestavy. Takovou strukturu nazýváme **Projekt**.

Příklady:

Měřící_bod_A

Jednoduchá sestava obsahující pouze měření v jednom bodě.

Čerpadlo_C/ obsahuje body A, B a C

Projekt obsahující jednu úroveň nad Sestavami. Čerpadlo obsahuje tři měřící body, tzn. každý bod je již jedna Sestava. Takový projekt nazýváme **Stroj**.

Linka_L/ obsahuje Čerpadlo_C1, C2 a C3/ které obsahují body A, B a C

Projekt obsahující dvě úrovně nad Sestavami. Linka_L obsahuje tři čerpadla C1, C2 a C3, která obsahují každé tři měřící body, každý bod je již jedna Sestava. Takový projekt nazýváme **Adresa**.

Export Projektu na VA4_DISC (flash disk)

Připojený počítač (USB) umí číst data uložená na VA4_DISC. Projekt, který chceme přenést do počítače, musí být nejdříve uložen na tento disk. Během měření jsou data ukládána pouze na provozní SSD disk v analyzátoru, který není dostupný z počítače. Jestliže je projekt uložen a chceme jej **Zavřít**, zobrazí se dotaz na export na VA4_DISC.

Exportovat Bod_B na VA4_DISC?

Stiskněte dle potřeby Ano nebo Ne.

Projekty nejsou exportovány automaticky, protože se jedná o pomalý proces, který by zdržoval při běžné práci. Export na VA4_DISC lze vyvolat také z menu tlačítkem **Projekt/ Export**.

Analyzátor - úvodní obrazovka

Úvodní obrazovka obsahuje seznam uložených Projektů. Seznam je prázdný, pokud nic není uloženo. Čas poslední změny projektu je zobrazen v pravém horním rohu.

Page	Seznam projektů		19.09	2013 15:49:20	
Up	Cerpadlo_P1 St				T
	Linka_L1 Ad				
	Měřící_bod_A Se				
Page					
Down					
					OK
Najdi					
Multi					
vypnuto					
15:49 19:09:2013	Projekt Snímač	e	Nastavit	Hlavní obrazovka	100

Nový projekt - Sestava

Stiskněte tlačítko **Projekt** a zvolte **Vytvoř Sestavu**.

Vytvoř Sestavu
Vytvoř Stroj
Vytvoř Adresu
Kopíruj
Přejmenuj
Smaž
Smaž data
Poznámky
Export
Export do rozběhu

Zadej jméno sestavy. Měřící bod_B

46

Adash 4400 – VA4Pro (II)

Zadejte jméno nové sestavy. Použijte tlačítko **Shift** pro zobrazení jiné nabídky kláves (velká, malá písmena, editace). Potvrďte **OK**. Nová sestava se poté objeví v seznamu.

Page	Seznam projektů	19.09.2013 15:52:11
Up	Čerpadlo_P1 St	
	DC_bod Se	
	Linka_L1 Ad	
	Měřící_bod_A Se	
	Měřící_bod_B Se	
Page		

Zkratka Se za jménem znamená, že se jedná o sestavu.

Nový projekt - Stroj

Struktura Stroj umožňuje zadat název stroje a do něj zahrnout několik sestav (měřících bodů). Stiskněte tlačítko **Projekt** a zvolte **Vytvoř Stroj**.

Zadej jméno stroje.	
Čerpadlo_P2	

Zadejte jméno nového stroje. Použijte tlačítko **Shift** pro zobrazení jiné nabídky kláves. Potvrďte **OK**. Nový stroj se poté objeví v seznamu se zkratkou **St** za jménem.

Stiskněte znovu tlačítko **OK**. Struktura stroje se otevře a zobrazí se seznam Sestav, které jsou v něm zahrnuty (u nového stroje je seznam prázdný).

Použijte tlačítko Zavři Projekt pro návrat do seznamu projektů.

ADASH s.r.o. Nový projekt - Adresa

Adresa je další vyšší struktura projektu. Může obsahovat několik strojů, které obsahují několik sestav (měřících míst). Stiskněte tlačítko **Projekt** a zvolte **Vytvoř Adresu**.

Zadejte jméno. Použijte tlačítko **Shift** pro zobrazení jiné nabídky kláves. Potvrďte **OK**. Nová Adresa se poté objeví v seznamu se zkratkou **Ad** za jménem.

Page	Seznam projektů		19.09.2013 15:5	4:23
Up	Čerpadlo_P1	St		
	Čerpadlo_P2	St		
	DC_bod	Se		
	Linka_L1	Ad		
-	Linka_L2	Ad		
Page	Měřící_bod_A	Se		
Down	Měřící_bod_B	Se		

Otevřte adresu tlačítkem OK.

Page	Linka_L2 Seznam strojů	
Up	Prázdný	

Objeví se seznam strojů. Stiskněte tlačítko Stroj a zvolte Vytvoř. Zadejte jméno a OK.

Shift	Linka_L2 Seznam st	rojů		
A/a/<->	Práz	Zadej jméno stroje. Ventilátor_V1	B	ackSp

Objeví se seznam strojů.

	Linka_L2	
Page	Seznam strojů	
Up	Ventilátor_V1	

Otevřete stroj tlačítkem **OK** a vytvořte sestavu stejně jako je popsáno v předchozí sekci. Použijte tlačítek **Zpět** a **Zavři projekt** pro návrat zpět do seznamu projektů.

Vytvoření nového měření

Zvolte jednu sestavu a stiskněte OK. Stiskněte Měření a zvolte Nové základní nebo Nové rozšířené.

Nové základní Nové rozšířené Kopíruj Info Změň Smaž Export do uff Export do wav Export do csv

ADASH s.r.o. **Nové základní**

Vytvořit nové měření lze dvěma způsoby. Volba **Nové základní** umožňuje pouze rychlý výběr z předdefinovaných měření. V následující tabulce jsou popsány jejich vlastnosti.

Název	Náze∨ Typ		Frekvenční	Délka	Počet	Počet	Počet
			rozsah	měření	vzorků	čar	průměrů
RPM	otáčky	ot./min					
ISO RMS	širokopásmová RMS	rychlost	10-1000 Hz	1 sec			
BEARING RMS	širokopásmová RMS	zrychlení	5000-25600 Hz	1 sec			
LBEARING RMS	širokopásmová RMS	zrychlení	500-25600 Hz	1 sec			
OVERALL RMS	širokopásmová RMS	zrychlení	1-25600 Hz	1 sec			
ISO 0-P	širokopásmová O-P	rychlost	10-1000 Hz	1 sec			
BEARING 0-P	širokopásmová O-P	zrychlení	5000-25600 Hz	1 sec			
LBEARING 0-P	širokopásmová O-P	zrychlení	500-25600 Hz	1 sec			
OVERALL 0-P	širokopásmová O-P	zrychlení	1-25600 Hz	1 sec			
ISO TIME	časový signál	rychlost	10-1000 Hz	1 sec	4096		
BEARING TIME	časový signál	zrychlení	5000-25600 Hz	0,5 sec	32768		
LBEARING TIME	časový signál	zrychlení	500-25600 Hz	0,5 sec	32768		
OVERALL TIME	časový signál	zrychlení	1-25600 Hz	1 sec	65536		
ISO SPEC	spektrum	rychlost	1600 Hz	4 sec		1600	4
OVERALL SPEC	spektrum	zrychlení	25600 Hz	1 sec		1600	16

Nové rozšířené

Umožňuje ruční nastavení všech měřících parametrů. Jejich seznam v menu se mění podle zvoleného typu měření.

Menší popisy v menu informují o veličinách, které jsou nastaveny jinde (např.trigr) nebo jsou výpočetně odvozeny ze zadávaného parametru.

Kanál 1, .., 4 Vstup použitý pro měření.

Jednotka název Požadovaná jednotka pro výsledky v grafu. Tím je také určeno, zda je potřeba signál integrovat a kolikrát.

Hodnota	RMS, Scaled 0-P, Scaled P-P, True 0-P, True P-P, AVG, Crest, Kurtosis
Způsob výpočtu	I hodnoty.
Scaled 0-P	1,414 * RMS
True 0-P	je skutečná špička v signálu.
Scaled P-P	2 * 1,414 * RMS
True P-P	je skutečný rozdíl maxima a minima v signálu.
AVG	je suma absolutních hodnot vzorků, vydělená počtem vzorků
Crest	True 0-P / RMS
Kurtosis	standardní vzorec pro Kurtosis

Typ výsledkůH1, H2, H3Obvyklé označení odezvové funkce,H1- šum na vstupu,H2 - šum na výstupu,H3 - průměr H1 a H2.PAS – Phase Assigned Spectrum – zobrazena amplituda výstupního kanálu a fázový rozdíl

Pásmo fmin (Hz) hodnota Hodnota HP filtru. Frekvence pod touto hodnotou budou odstraněny. Volba žádná znamená, že bude použit pouze vstupní DSP filtr (cca 0,6 Hz).

Pásmo fmax(Hz) hodnota Hodnota LP filtru. Frekvence nad touto hodnotou budou odstraněny. Pod hodnotou je uvedena použitá vzorkovací frekvence fs, která z ní vyplývá.

DEMOD fmin (Hz) hodnota Spodní mezní frekvence (HP - odstraní nízké frekvence) pásmové filtrace před vstupem do obálkového modulátoru.

DEMOD fmax(Hz) hodnota Horní mezní frekvence (LP - odstraní vysoké frekvence) pásmové filtrace před vstupem do obálkového modulátoru.

Vstup 1, .., 4 Vstupní kanál pro měření odezvy.

Výstup 1, .., 4 Výstupní kanál pro měření odezvy.

Okno Rectangular, Hanning, Transient, Exponential Nabídka běžných FFT oken.

Zoom spektrum	<u>ne</u>	bude vypočteno standardní spektrum (rozsah od nuly)		
	ano	je použito zoom spektrum (rozsah spektra kolem centrální frekvence)		

Centrální frekvence hodnota centrální frekvence pro zoom spektrum

Rozsah hodnota Frekvenční rozsah grafu. Pod hodnotou je uvedena odpovídající vzorkovací frekvence (fs=), která bude použita při měření.

Vzorkování ACMT(Hz)	hodnot	ta Vzorkovací frekvence pro ACMT měření.
Řízení trigry	<u>vypnuto</u> zapnuto	Délka signálu je dána počtem vzorků při dané fs. Délka signálu je dána počtem trigrů (např.otáček) při dané fs.
Počet trigrů	hodnota	Požadovaný počet otáček v signálu při řízení otáčkami zapnuto

ADASH s.r.o. Počet vzorků hodnotou je zobrazena	hodnota délka signálu v	<i>Adash 4400</i> – VA4Pro <i>(II)</i> Požadovaný počet vzorků signálu (řízení otáčkami vypnuto). Pod sekundách.
Počet čar pro výpočet spektra v s	hodnota ekundách.	Počet čar spektra. Pod hodnotou je zobrazena délka časového signálu
Průměrování Procedura průměrován volně (bez trigro spojitě	hodnota í se liší podle typ u)	Počet průměrů pu použitého trigru (v Nastavit/ Nastavení Trigru/ Zdroj Trigru): po spuštění měření jsou všechny potřebné časové signály naměřeny
externí naměřeny spojitě bez č tacho amplituda ruční	po příchodu exi ekání na další tr každé měření č každé měření č po spuštění mě	terního trigru (jednoho=prvního) jsou všechny potřebné časové signály igry asového signálu je spuštěno tacho trigrem (konstantní fáze) asového signálu je spuštěno amplitudovým trigrem iření ručně isou všechny časové signály naměřeny volně bez trigru

Poznámka! Pokud použijete průměrování, zobrazí se v levém dolním rohu statických grafů hodnoty *Min* a *Max*. To představuje minimální a maximální hodnotu během průměrování. Takto můžete vidět odchylku měřené veličiny. Tyto hodnoty se zobrazují pouze během měření a neukládají se do trendů.

1 RMS ch:1 B:10-1000Hz NS:4096 T:1s		8/8;17.7Hz
Min: 8.17; Max: 8.41	8.31 mm/s	
1 RMS ch:1 B:10-1000Hz NS:4096 T:1s		8/8;-Hz
Min: 0.045; Max: 25.1	12.8 mm/s	

V prvním grafu můžete vidět malou odchylku v hodnotě (Min: 8,17; Max 8,41). Tato průměrná hodnota je přijatelná. Naopak, druhý graf ukazuje měření s velkou odchylkou (Min: 0,045; Max: 25,1). Věnujte pozornost těmto měřením. Naměřená hodnota je téměř náhodná.

Typ průměrovánílineární, držet špičku, time synchro (pro spektra)lineární, maximum, minimum, medián (pro statické hodnoty)

Typ průměrování **time synchro** lze nastavit pro neobálková, nezoomovaná spektra. Jedná se o průměrování časového signálu před výpočtem spektra.

Překrývání % hodnota Překrývání časových signálů při průměrování (overlap).

Frekvence <u>otáčky</u>, hodnota frekvence, pro kterou bude měřen posun fáze, uživatel může zadat přímo číslo (hodnota) nebo může být posun fáze měřen na otáčkové frekvenci (z otáčkové sondy).

Řád

Obvykle se měří amplituda a fáze na otáčkové frekvenci. Parametrem Řád můžete definovat jakýkoli násobek otáčkové frekvence a měřit amplitudu a fázi na této frekvenci:

frekvence = Řád * otáčky

Pozor! Jako řád můžete zadat jakékoli číslo, ale fáze může být vyhodnocena jen pro celočíselné řády.

Řády (1/2,1-5), (1-5), (1/2,1-10), (1-10)

Rozlišení otáčky / 4 – otáčky / 1024

Tato hodnota udává šířku pásma jedné čáry spektra. Existují-li dvě blízké frekvence, které jsou obsažené v jedné čáře, pak tato čára zobrazí součet obou. Chceme-li získat správnou hodnotu amplitudy a fáze na, např., otáčkové frekvenci, musíme zajistit, aby čára na otáčkové frekvenci obsahovala pouze otáčkovou frekvenci. Kdyby otáčková čára byla široká tak, že by obsahovala i jinou frekvenci, pak bychom dostali nesprávnou hodnotu.

Další důležitou vlastností rozlišení **otáčky / N** je, že **N** znamená potřebný počet otáček pro časový záznam, ze kterého je spektrum vypočteno.

Příklad! Otáčky jsou 25Hz. Rozlišení je "*otáčky / 4*", tzn. časový záznam obsahuje 4 otáčky a šířka jedné čáry spektra je 6,25 Hz. To znamená, že v otáčkové čáře budou všechny frekvence v intervalu (21.875, 28.125). Pokud se rušivá frekvence nachází v tomto intervalu, je nutné nastavit vyšší rozlišení, např. otáčky / 8.

Pozor! Pokud je nastaven menší počet FFT čar, pak vyhodnocení a zobrazení rychlejší. Pokud nastavíte vyšší rozlišení (např. otáčky / 64 nebo dokonce otáčky / 1024), musí se nasbírat více otáček a na výsledek budete

Adash 4400 – VA4Pro (II)

čekat delší dobu. Používejte vyšší rozlišení pouze v případech, kdy signál obsahuje dvě blízké frekvence a vy je potřebujete oddělit.

Rozlišení v řádech. Hodnota rozlišení v řadové analýze souvisí s počtem otáček podobně jako rozlišení frekvenčního spektra souvisí s počtem sekund. Rozlišení ve frekvenční oblasti můžeme vyjádřit jako ∆f = 1 / T, kde T je počet sekund pro FFT záznam. Podobně v řadové analýze můžeme rozlišení vyjádřit jako ∆ord = 1 / rev, kde rev je počet otáček pro FFT záznam. Toto rozlišení je definováno v řádech. Chcete-li jej vyjádřit v jednotce frekvence, pak jej musíte vynásobit otáčkovou frekvencí. Proto je hodnota rozlišení vyjádřena jako zlomek otáčkové frekvence a požadovaný počet otáček je zobrazen jako poznámka pod hodnotou.

Rozlišení:	otáčky / 4
NUZIISEIII.	t = 4 ot.

Pozor! Pro měření s nastavitelnou hodnotou řádu dejte pozor, aby bylo nastaveno správné rozlišení pro požadovaný řád. Hodnota řádu musí být celočíselným násobkem rozlišení v řádech, tzn. celočíselným násobkem 1 / rev. Menu samotné pomáhá splnit tuto podmínku. Kdykoli zadáte hodnotu řádu, automaticky se nastaví nejnižší možná hodnota rozlišení. Potom můžete rozlišení nastavit, jak potřebujete. Podmenu rozlišení vždy obsahuje vyhovující hodnoty. Nicméně stále můžete nastavit uživatelskou hodnotu. Jestliže nastavený řád nelze použít pro nastavené rozlišení, nejbližší možný řád, který bude skutečně použit ve výpočtu, je zobrazen jako poznámka.

Např., když je rozlišení otáčky / 4, pak rozlišení v řádech je ¼ = 0.25. Dostupné řády jsou např. 1,00, 1,25, 1,5.

Řád:	1.2 nejbližší možný = 1.25
Rozlišení:	otáčky / 4 t = 4 ot.

Pozor! Hodnota řádu musí být alespoň čtyřikrát vyšší než Rozlišení v řádech. Přístroj zajistí dodržení této podmínky bez ohledu na nastavení tak, že zvýší počet otáček.

Full spektrum ano, ne

Je-li zadáno **ano**, bude počítáno dvoustranné full spektrum ze dvou kanálů (více informací naleznete v literatuře o analýze turbín)

Další funkce pro Měření

Kopíruj

zkopíruje označené měření

Info

zobrazí parametry měření

Změň

změna parametrů měření

Smaž

smaže označené měření

Meze

Pro statická měření (širokopásmová hodnota, otáčky, dc, …) můžete definovat hodnoty mezí. Meze dávají upozornění, když naměřená hodnota překročí nějakou kritickou hodnotu. Během měření a také během

Adash 4400 – VA4Pro (II)

prohlížení naměřených hodnot je v grafu měření s definovanými mezemi zobrazen příslušný alarm. Alarm informuje o závažnosti naměřené hodnoty.

Každá **mezní hodnota** rozděluje numerickou osu na dva intervaly, čísla pod mezní hodnotou a čísla nad ní. Můžete nastavit **alarm** pro každý interval. Alarm představuje závažnost neboli barvu hodnot naměřených v intervalu. Můžete si vybrat jednu ze čtyř úrovní závažnosti alarmu, **Ok** signalizováno zelenou barvou, **Varování** signalizováno žlutou barvou, **Varování** signalizováno oranžovou barvou a **Nebezpečí** signalizováno červenou barvou. Je jen na vás, jakou závažnost přiřadíte kterému intervalu. Konkrétní alarm se zobrazí, když je naměřená hodnota z příslušného intervalu. Můžete definovat více než jednu mezní hodnotu a rozdělit numerickou osu na více intervalů.

V níže uvedeném příkladu jsme definovali dvě mezní hodnoty, 1 a 4 mm/s. Definovali jsme alarm pod 1 mm/s jako *Ok* (zelená barva), alarm mezi 1 a 4 mm/s jako *Varování* (žlutá barva) a alarm nad 4 mm/s jako *Nebezpečí* (červená barva). Na prvním obrázku vidíte skutečnou naměřenou hodnotu 2,61 mm/s, která je větší než 1 a menší než 4 (zobrazeno jako >1, <4 mm/s na pravé straně) a je tedy signalizována žlutou barvou. Druhý obrázek ukazuje trend hodnot. V trendu můžete vidět dvě mezní čáry, žlutou čáru na 1 mm/s a červenou čáru na 4 mm/s. Představují definované mezní hodnoty a jejich barvy odpovídají alarmům nad mezní hodnotou. Každá hodnota v trendu je nakreslena jako malý barevný kroužek, jehož barva odpovídá alarmu.

Jsou tři možnosti jak definovat meze.

Adash

Meze Adash jsou odvozeny z pravidel, která jsou vyvíjena po mnoho let historie firmy. Tyto meze vyžadují znalost hodnoty otáček. Meze Adash jsou k dispozici pro dva typy datových buněk:

 rychlost ve frekvenčním rozsahu 10 - 1000 Hz, což velmi dobře vyhovuje pro detekci celkového stavu stroje

 zrychlení ve frekvenčním rozsahu 500 – 16000 Hz (horní frekvence může být i vyšší než 16000 Hz), což vyhovuje pro detekci stavu ložiska

Tyto mezní hodnoty mohou být pro některé stroje příliš přísné. Pro měření rychlosti je tedy můžete upravit pomocí položky *Hodnoty* v nabídce Limity.

- Nízké limity jako v grafu výše
- Střední limity pro nízké * √2 (√2 přibližně se rovná 1,4)
- Vysoké limity pro nízké * 2

Poznámka! Pro meze Adash se v trendech používají pouze malé barevné kroužky, nikoli mezní čáry. Je to kvůli závislosti mezní hodnoty na otáčkách. Každý odečet může mít jiné otáčky a proto i jinou mezní hodnotu.

ISO 10816

Meze jsou definovány podle normy ISO 10816 a jsou k dispozici pouze pro měření rychlosti ve frekvenčním intervalu 10 - 1000 Hz. Před použitím tohoto standardu musí být pro příslušný kanál definována skupina stroje a uložení stroje dle ISO 10816 strojů (viz <u>MENU / NASTAVENÍ</u> / <u>Vlastnosti AC snímačů</u> / <u>ISO Skupina stroje</u> a <u>ISO Uložení stroje</u>).

Poznámka! Závažnost v mezích ISO je označena také písmeny A, B, C, D. Použitá skupina a uložení se také zobrazí v grafu.

1 RMS ch:1 B:10-1000Hz NS:4096 T:1s		1/1;-Hz
	2.14 manual a	> 2.3, < 4.5 mm/s
	🧧 3.14 mm/s	ISO 10816: Group2, flexible

uživatel

Uživatel může definovat vlastní limity.

Тур:	uživatel			
Jednotka:	mm/s			
Alarm 1:	Ok			
Přidat mezní h	nodnotu			
Uložit				

Ve výchozím nastavení ještě není definována žádná mezní hodnota a pro všechny měřené hodnoty je alarm nastaven na *Ok*. Je to stejné jako v dialogu DDS pro nastavení uživatelských mezí.

Nastavení	Pochůzka	Meze	Data	Reference			
○ Nede	O Nedef.						
OISO	O ISO 10816						
Adas	h	Nízk	é	\sim			
OUživi	atel						
Jednotk	а				\oplus		
mm/s	\sim				Ok		

Mezní hodnotu můžete přidat pomocí položky Přidat mezní hodnotu a zadání čísla (např. 1).

Тур:	uživatel
Jednotka:	mm/s
Alarm 1:	Ok
Mezní hodn	ota 1: 1
Alarm 2:	Varování
Přidat mezn	í hodnotu
Uloż	źit

Nyní je definována jedna mezní hodnota (1 mm/ s), která rozděluje číselnou osu na dva intervaly (pod 1 mm/s a nad ním). Můžete definovat alarm pro každý interval. Alarm 1 definuje alarm pod mezní hodnotou 1 a Alarm 2 definuje alarm nad mezní hodnotou 1. Stejný postup lze provést v DDS kliknutím na symbol \oplus a zadáním čísla.

stavení Pochůzka	Meze Data	Reference		
O Nedef.				
O ISO 10816				
Adash	Nízké	~		
 Uživatel 		_		
-				
Jednotka		\oplus	1	\oplus
	(01-	i i i i i i i i i i i i i i i i i i i	Manage 1 at

Stejným způsobem můžete zadat libovolný počet mezních hodnot.

Тур):	uži	vatel
Jeo	Inotka	i: n	nm/s
Ala	rm 1:		Ok
Me	zní ho	dnota 1:	1
Ala	rm 2:	Varo	vání
Me	zní ho	dnota 2:	4
Ala	rm 3:	Výst	raha
Při	dat me	ezní hodn	otu
	l	Jložit	
Nastavení Pochi	ůzka Meze Data	Reference	
O Nedef.			
O ISO 10816			
Adash	Nízké	~	

 Uživatel 						
Jednotka	\oplus	1	\oplus	4	\oplus	
mm/s 🗸	Ok	- <u>-</u>	Varování	-	Výstraha	-

Mezní hodnoty lze také upravit nebo odstranit pomocí příslušné položky Mezní hodnota.

Тур:	uživatel	
Jednotka:	mm/s	
Alarm 1:	Ok	
Mezní hodn	ota 1: 1	
Alarm 2:	Varování	
Mezní hodr	ota 2: 4	změnit
Alarm 3:	Výstraha	odstranit
Přidat mezr	ní hodnotu	
Ulo	žit	

Alarmy jsou definovány pomocí příslušné položky Alarm.

Typ: uživatel Jednotka: mm/s Alarm 1: Ok Mezní hodnota 1: 1 Alarm 2: Varování Mezní hodnota 2: 4	
Alarm 3: Ohrožení	Ok
Přidat mezní hodnotu	Varování
Uložit	Výstraha
	Ohrožení
Nastavení Pochůzka Meze Data Reference	
Nastavení Pochůzka Meze Data Reference	
Nastavení Pochůzka Meze Data Reference O Nedef, O ISO 10816	
Nastavení Pochůzka Meze Data Reference	
Nastavení Pochůka Meze Data Reference O Nedef. O ISO 10816 O Adash © Uživatel	
Nastavení Pochůzka Meze Data Reference O Nedef. O ISO 10816 O Adash Nazide © Uživatel Jednotka ① 1 ①	4 ⊕
Nastavení Pochůzka Meze Data Reference O Nedef. O ISO 10815 O Adash Wäcké © Uživatel Jechotka mm/s Ok Varování	4 ① Onroisni *
Nastavení Pochůzka Meze Data Reference O Nedef. O ISO 10815 O Adash O Uživatel Jednotka mm/s O K Varování	4 ① • Ohrožani • Varování Varování

Export do uff

uloží data označeného měření do formátu uff (pouze pro vybrané datové typy),

Je-li zobrazen **Aktuální** právě změřený průběh, pak bude uloženo pouze toto zobrazené měření (do souboru). Je-li zobrazeno měření již uložené v paměti (Trend), pak se zobrazí dotaz **Export (Vše/Jedno)?**. Stisknutím tlačítka **Jedno** bude uloženo jen zobrazené měření (do souboru).

Stisknutím tlačítka **Vše** budou uložena všechna uložená měření (do adresáře, každé měření v samostatném souboru).

soubor je uložen na VA4_DISC do adresáře uff.

Jestliže je zobrazena historie, můžete uložit aktuálně zobrazené výsledky měření nebo výsledky všech měření najednou. Poté, co vyberete **Export do uff**, bude zobrazen dotaz

Export do wav

uloží aktuálně zobrazené výsledky měření do formátu wav, soubor je uložen na VA4_DISC do adresáře wav (pouze pro časový signál a orbitu)

Časový signál je exportován jako jeden soubor (1.kanál je signál, 2. kanál je trigr). Orbita je exportována jako dva soubory (1. soubor je časový signál kanálu A spolu s triggrem, 2. soubor je časový signál kanálu B spolu s triggrem).

Před exportem do wav musíte zadat požadovanou hodnotu rozsahu wav v jednotce měření. Tím dosáhnete lepšího amplitudového rozlišení signálu wav. Jestliže je maximální špičková hodnota v časovém signálu např. 8mm/s pak zadejte hodnotu o něco vyšší, např. 10.

ADASH s.r.o. Export do csv

uloží aktuálně zobrazené výsledky označeného měření do formátu csv (pouze pro vybrané datové typy), soubor je uložen na VA4_DISC do adresáře csv, popis dat v souborech csv je uveden dále)

Export do csv (vše)

Export do csv pro všechna měření v sestavě (do adresáře)

Export do záznamů

(pouze je-li označen graf typu Záznam)

Vyvolá seznam všech záznamů označeného grafu. Názvy záznamů v seznamu jsou odvozeny od data a času pořízení záznamu ve formátu rrrr_mm_dd_hh_mm_ss_msec Ze seznamu si můžete zvolit, které záznamy chcete exportovat. Zvolíte-li jen jeden záznam, budete dotázání na jeho nový název. Výchozí název nového záznamu začíná názvem sestavy, ve které byl pořízen, následuje datum a čas pořízení záznamu ve zmíněném formátu. Po potvrzení budou zvolené záznamy zkopírovány do modulu **Záznam**, kde s nimi můžete pracovat jako se záznamy pořízenými v modulu **Záznam** (prohlížet náhled, pořizovat výběry, použít jako zdroj signálu ...).

Export na VA4_DISC

(pouze je-li označen graf typu Záznam) Stejný seznam jako v předchozí položce. Export zvolených záznamů na VA4_DISC do adresáře VA4recorder.

Popis dat v souboru csv

Zde je uveden popis řádku v souboru csv pro každý datový typ, který podporuje ukládání do souboru csv.

čas;data;trigr
čas;data;trigr
čas,data A, data B, data X, data Y, trigr
frekvence, data
frekvence, data
kvefrence, data
čas, data min, data max, trigr
řád, amplituda, fáze
frekvence, amplituda, fáze, koherence
frekvence, data

Další funkce pro projekt a položky strukturovaného projektu

Jestliže je zobrazen seznam projektů, pak jsou k dispozici další funkce.

Vytvoř Sestavu Vytvoř Stroj Vytvoř Adresu Kopíruj Přejmenuj Smaž Smaž data Poznámky Export Export do rozběhu

Kopíruj zkopíruje označenou položku do nové

Přejmenuj přejmenuje označenou položku

Smaž smaže označenou položku

Smaž data smaže uložená měření v označené položce

Poznámky popsáno dále v kapitole Pochůzka

Export exportuje označenou položku na VA4_DISC, kde je dostupná pro počítač.

Export do rozběhu převede označenou položku do modulu **Rozběh**, kde je pak dostupná v seznamu projektů modulu **Rozběh** (podobně je možné převézt projekt z modulu **Rozběh** do modulu **Analyzer**)

Funkce pro sestavu – menu Sestava

Tyto funkce jsou dostupné, je-li otevřená sestava (tzn. jsou zobrazeny grafy).

Poznámky popsáno dále v samostatné kapitole

Ulož data uložení aktuálně změřených dat, tzn. všech grafů. Jestliže uzavřete sestavu bez uložení, budou výsledky ztraceny.

Ukaž Trend/ Ukaž aktuální

Přepínání mezi grafy posledních změřených výsledků (Aktuální hodnoty) a uložených výsledků v paměti (Trend).

Příklad zobrazení trendu. Nahoře jsou dva trendy širokopásmových hodnot. Dole je kaskádový graf spekter.

Smaž poslední data (je-li zobrazen trend), smaže poslední data v sestavě nebo měřicím bodě (podle toho co je zobrazeno).

Zadej otáčky

Tato funkce je v menu pod levým tlačítkem. Tlačítko může mít různý název pro různé obrazovky (Stroj, Místo, Sestava).

Ručně zadaná hodnota otáček bude uložena do všech následujících měření. Je uložena na stejnou pozici v hlavičce dat jako hodnota otáček změřených z otáčkové (tacho) sondy. Jestliže jsou otáčky zadány ručně a zároveň měřeny otáčkovou sondou, pak budou uloženy otáčky z otáčkové sondy.

Aktuální hodnota ručně zadaných otáček je zobrazena ve stavovém řádku vpravo

Zruš otáčky

Zruší ručně zadané otáčky.

Vytváření měření v Sestavě

Již bylo vysvětleno, že Sestava obsahuje jedno či více měření, které se provádějí najednou.

Příklad požadavků na měření:

- 1: RMS širokopásmová hodnota v mm/s ve frekvenčním pásmu 10-1000Hz, měřeno ze vstupu 1
- 2: RMS širokopásmová hodnota v g ve frekvenčním pásmu 500-25600Hz, měřeno ze vstupu 1
- 3: Spektrum v mm/s, rozsah 400Hz, 1600 čar, 4 průměry, měřeno ze vstupu 1
- 4: Spektrum v g, rozsah 3200Hz, 3200 čar, 32 průměrů, překrývání 50%, měřeno ze vstupu 1

Všechna měření vytvoříme podle popisu v kapitole **Vytvoření nového měření**. Stiskněte tlačítko **START** (zelený trojúhelník). Měření se zastaví stiskem **Stop měření**. Pokud je v **Nastavení/Nastavení trigru/Režim trigru** nastavena hodnota **jedno měření**, pak se měření ukončí po prvním měření samo.

Každý graf (obdélník) na obrazovce obsahuje výsledky jednoho měření. Pokud by byl počet měření větší, pak budou grafy na více obrazovkách, mezi kterými budeme přecházet pomocí šipek.

Každý graf obsahuje řádek popisu měření: 1 RMS ch:1 B:10-1000Hz NS:4096 T:1s

Adash 4400 – VA4Pro (II)

Měření č.1, RMS hodnota, vstup 1, pásmo 10-1000Hz, počet vzorků časového signálu použitého pro výpočet 4096 a délka 1 sec.

3 spec ch:1 B:10-400Hz L:1600 T:4s

4/4;17.7Hz

Měření č.3, spektrum, vstup 1, rozsah 400Hz, 1600 čar, délka časového signálu pro vyhodnocení 4s, dokončeny 4 průměry z požadovaných 4, otáčky 17,7Hz (bylo připojeno tacho)

Úplný slovníček překladu datových typů viz Příloha C.

Vstupní zásobník

Měřený vstupní signál převedený do digitálního tvaru je průběžně ukládán do vstupního zásobníku v operační paměti přístroje. Všechny vyhodnocovací procedury (tzn.virtuální analyzátory) zde načítají a počítají požadované výstupy. Jestliže je požadováno příliš mnoho výpočtů nad jedním vstupním signálem, pak se doba výpočtu prodlužuje a může nastat zpoždění. Tzn. výsledky nejsou počítány z posledních naměřených dat, ale někde z hloubky zásobníku. Praktický dopadem je skutečnost, že výsledky na obrazovce (grafy) odpovídají signálu, který byl na vstupu změřen před několika sekundami. Po ukončení měření pak ještě na obrazovce uvidíte několik sekund zobrazovat grafy, analyzátor tak "dojíždí" celý vstupní zásobník.

Načítán	í ze vstupníh	o bufferu
	67%	

Pokud výsledky nejsou zpožděny pak je v pravém horním rohu zobrazeno **RT** (Real Time - reálný čas). Pokud výsledky jsou zpožděny pak je v pravém horním rohu zobrazeno **non RT**.

Pásmo fmin[Hz] - HP filtrace

Skoro u všech měření se nastavuje HP filtrace, tzn. odstranění nízkých frekvencí. Tento parametr se nastavuje pomocí Pásmo fmin[Hz]. Lze nastavit hodnoty **žádná, 1, 2, 10 a jiná**. Hodnota **žádná** neznamená, že by v signálu zůstala stejnosměrná složka, na vstupu A/D převodníku je filtr, který se použije vždy. Při volbě hodnoty **žádná** je vstupní rozsah již od 0,35 Hz (útlum -3dB). Viz obr.

Popis tlačítek v módu Analyzátor

Tlačítko Význam šipek

Přepíná význam tlačítek se šipkami. Opakovaně stiskněte tlačítko a levé horní tlačítko bude měnit významy: **Výběr/ Umístění** - po jeho stisknutí se mění význam šipek vpravo nahoře, buď se vybírá graf nebo se mění pořadí grafů (umístění).

Zoom X/Zoom Y - po jeho stisknutí se mění význam šipek vpravo nahoře, provádějí zoom (výřez) na ose X nebo Y.

Posun X/Posun Y - po jeho stisknutí se mění význam šipek vpravo nahoře, provádějí posun výřezu na ose X nebo Y. Tato funkce je dostupná až po provedení zoomu (výřezu).

Delta X - v případě zobrazení delta kurzoru šipky vpravo nahoře mění jeho délku. Stisk tlačítka **Delta X** nemá žádný efekt.

Trend -pohyb v trendu pomocí šipek vpravo nahoře. Stisk tlačítka Trend nemá žádný efekt.

Tlačítko Start a OK

Tlačítko vpravo uprostřed se používá jako: **START** - startuje měření, **OK** potvrzuje volby a vstupy.

Tlačítko Stop, Zrušit, Zpět a Zavřít

Tlačítko vlevo uprostřed se používá jako: **STOP** - zastavení měření, **Zrušit** - ruší definici nebo výběr v menu, **Zpět** - pohyb zpět ve struktuře projektu **Zavřít** - zavře obrazovku měření a vrátí se do seznamu projektů.

Graph Max/Min

Zvětšuje (na celou obrazovku) nebo zmenšuje vybraný graf.

ADASH s.r.o. **Graf Vlastnosti**

Vyvolá menu, kde lze nastavit vlastnosti grafu, např. rozsahy, lin/log osy apod.

Zobraz <u>hodnotu</u>, trend

Když je použito **Zobraz hodnotu**, pak je zobrazena pouze poslední hodnota (standardní nastavení)

Když je použito Zobraz trend, pak jsou zobrazeny hodnoty v trendu

Měřítko - <u>max</u> měřítko se automaticky p současné maximum rozs auto podle naměřených hodno uživatel pevný rozsah grafu nasta

měřítko se automaticky pouze zvětšuje, pokud se naměří vyšší hodnota než je současné maximum rozsahu podle naměřených hodnot se měřítko automaticky zvětšuje i zmenšuje pevný rozsah grafu nastavený uživatelem

Jednotka grafu pro spektra

Nastaví fyzikální jednotku, ve které je zobrazen signál v grafu. Jednotka se může lišit od jednotky, ve které byl signál změřen a uložen (*Nastavení měření / Jednotka*). Můžete si zvolit libovolnou jednotku z nabídky a signál v grafu bude před zobrazením přepočten. Ve výchozím stavu je nastavena hodnota **jako měření**, tzn. že v grafu nedochází k žádným přepočtům a signál je zobrazen ve stejné jednotce v jaké byl změřen.

Poznámka! Ve spektru je při zobrazení povoleno i integrovat nebo derivovat.

Kurzor pro časové signály -

singlejednoduchý kurzorperiodickýnásobný kurzor se vzdáleností delta (např. pro hledání opakovací frekvence)deltapásmová kurzor

Kurzor pro spektra -

jednoduchý kurzor
násobný kurzor pro hledání harmonických frekvencí
postranní pásma okolo hlavního kurzoru se vzdáleností delta
pásmový kurzor

Pozice kursoru časová nebo frekvenční pozice v grafu, je umožněno ruční zadání

Delta X časový nebo frekvenční interval použitý pro výpočet delta kurzoru, je umožněno ruční zadání

- Osa X lin, log
- Osa Y lin, log

Osa Z -

Pořadí Z - první vpředu, poslední vpředu pořadí vykreslovaných spekter

čas grafy jsou vykreslovány podle doby měření

otáčky grafy jsou vykreslovány podle hodnoty otáček (tacho snímač musí být použit) rovnoměrné rovnoměrné vykreslení

Hodnota - <u>RMS</u>, 0-P, P-P typ hodnot zobrazovaných na ose Y Dokud nezadáte tuto hodnotu, graf bude používat globální hodnotu **Spektrum Nastavení / Hodnota**. Můžete tedy měnit všechny grafy s nezadaným typem změnou v globálech.

Seznam špiček -	<u>zapnuto,</u> vypnuto	seznam 5 nejvyšších hodnot ve spektru
-----------------	-------------------------	---------------------------------------

Tabulka Synchzapnuto, vypnutotabulka synchronizovaných hodnot v grafu spektraSubSynch je RMS hodnota pod otáčkovou frekvencí

Synch je RMS hodnota otáčkové frekvence a jejích harmonických

NonSynch je celková RMS hodnota s odečtením Synch a SubSynch

Elect je RMS hodnota frekvence elektrické sítě a jejích harmonických (nastavení je v Globalní nastavení/Frekvence el. sítě)

Všechny hodnoty jsou zobrazeny absolutně (v jednotce grafu) a relativně (v procentech k celkové efektivní hodnoty spektra)

Poruchové frekvence - jestliže je definován typ ložiska (buď výběrem z databáze nebo zadáním rozměrů) a byly současně měřeny otáčky (tacho), pak se ve spektru zobrazí poruchové frekvence ložiska.

- FTF
 - Fundamental Train Frequency poruchová frekvence klece
- BPFI

Ball Pass Frequency of Inner ring poruchová frekvence vnitřního kroužku

• BPFO

Ball Pass Frequency of Outer ring

- poruchová frekvence vnějšího kroužku
- BSF2

Ball Spin Frequency * 2 = Ball defect frequency

poruchová frekvence kuličky

BSF2 je poruchová frekvence, která je přímo viditelná ve spektru, protože poškozená rotující kulička narazí do ložiska dvakrát během jednoho otočení, jednou narazí do vnějšího kroužku a podruhé do vnitřního

Pokud otáčky nebyly měřeny, pak umístěte kurzor na frekvenci otáček ručně. Poruchové frekvence budou opět zobrazeny.

Další informace naleznete na www.adash.com nebo napište dotaz na email: info@adash.cz

ad_s grafy amplitudy (horní graf) a diferenční amplitudy v závislosti na otáčkách, diferenční amplituda se počítá jako rozdíl amplitudy vůči amplitudě v místě kurzoru

trend3D_t zobrazení "trubky" ("tube", "schlauch") v 3D "tube" view, jedná se o Nyquistův graf protažený v časové ose Z

Pohled (posun fáze) – pouze pro trend

<u>lineární</u> polární graf posunu fáze, podílu amplitud a koherence v závislosti na čase zobrazení v komplexní rovině

Pohled (spektrum) - pro trend

amplituda	jeden graf amplitudy
kaskáda	graf spekter v kaskádě
spektrograf	2D zobrazení amplitudy vs. čas
fáze	jeden graf fáze

Pohled (spektrum) - pro aktuální hodnoty

<u>amplituda</u> čas fáze jeden graf amplitudy zobrazí časový signál z kterého byla vypočtena FFT jeden graf fáze

Pohled (časový signál) <u>lineární</u> kruhový

standardní zobrazení časového signálu signál vykreslen do kruhu **Poznámka!** mezi dvěma tacho značkami je úhel 360°, neobsahuje-li signál tacho značky, je 360°mezi začátkem a koncem signálu

Pohled (orbita)

<u>orbita</u> AB XY běžný 2D pohled na orbitu časové signály A,B časové signály přepočtené na osy X.Y

Pohled (filtrovaná orbita) <u>orbita</u>

Výstup FFT (spektrum) normalizace výstupu FFT amplitudové spektrum výkonové spektrum amplitudová spektrální hustota výkonová spektrální hustota (PSD) energetická spektrální hustota (ESD)

Perioda otáček	zapnuto, <u>vypn</u>	uto v grafu bude vyznačena perioda otáček
Perioda FTF	zapnuto, <u>vypnuto</u>	v grafu bude vyznačena perioda poruchové frekvence ložiska (FTF)
Perioda BSF	zapnuto, <u>vypnuto</u>	v grafu bude vyznačena perioda poruchové frekvence ložiska (BSF)
Perioda BPFO	zapnuto, <u>vypnuto</u>	v grafu bude vyznačena perioda poruchové frekvence ložiska (BPFO)
Perioda BPFI	zapnuto, <u>vypnuto</u>	v grafu bude vyznačena perioda poruchové frekvence ložiska (BPFI)
Čáry grafu diskrétní vertiká	<u>spojité,</u> diskrétní Iní čáry jednotlivých freł	Spektrum může být vykresleno jako spojitá linka vrcholků čar, nebo vencí.

spojité

Měření FASIT

Podrobný popis je v kapitole o modulu **FASIT**. Je-li měřen **FASIT**, probíhá před měřením detekce otáček (viz kapitola **Detekce otáček**).

Měření širokopásmové hodnoty

Typ: širokopásmov	á hodnota
volně (bez triggeru)),stálé měření
Kanál:	1
Jednotka:	mm/s
Hodnota:	RMS
Pásmo fmin[Hz]:	10
Pásmo fmax[Hz]:	1000
	fs=4096Hz
Řízení trigry:	∨ypnuto
Počet ∨zorků:	4096
	t=1s
Typ průměro∨ání:	lineární
Průměro∨ání:	∨ypnuto
	total t=1s
Uložit	

Jedná se o základní pásmové měření. V uvedeném nastavení se bude měřit RMS hodnota rychlosti vibrací (mm/s) v pásmu 10-1000Hz. Měření bude trvat 1 sec.

1 RMS ch:1 B:10-1000Hz NS:4096 T:1s

1/1;50.5Hz

Na prvním řádku jsou zkráceně popsány vstupní parametry. Hodnota 50.5Hz vpravo je hodnota otáček, které byly souběžně měřeny.

Změnte Hodnota na 0-P. Spustťe opět měření.

1 0-P ch:1 B:10-1000Hz NS:4096 T:1s 1/1;50.5Hz 24.8mm/s

15.3mm/s

Všimněme si, že 24.8 není 1.414 krát větší než 15.3 (RMS). Někteří uživatelé chybně předpokládají, že tento přepočtový koeficient má obecnou platnost. Není to pravda. Takový přepočet je správný pouze pro harmonické

68

Adash 4400 – VA4Pro (II)

kmitání (tzn. průběh sinus). Obecně jsou RMS a 0-P zcela nezávislé. Platí pouze vztah 0-P je vždy větší než RMS.

Zapněte průměrování na hodnotu 8. Nyní bude provedeno 8 nezávislých měření (každé 1 sec dlouhé) a z výsledků bude vypočítán aritmetický průměr (RV = (V1+V2+...+V8)/8). Údaj 8/8 vpravo nahoře říká, že 8 měření z celkem požadovaných 8 bylo provedeno.

1 0-P ch:1 B:10-1000Hz NS:4096 T:1s	8/8;49.7Hz
24.3mm/s	

Nyní průměrování opět vypněte a nastavte délku měření na 8 sec (nastavením 32768 vzorků).

l 0-P ch:1 B:10-1000Hz NS:32768 T:8s	1/1;49.7Hz
24 8mm/s	

Výsledek je mírně odlišný od minulého měření. Je pochopitelné, že nalezené maximum 0-P v 8 sec signálu je vyšší než průměr osmi hodnot v předešlém měření.

Nastavte opět měření RMS, čas měření nechejte na 8 sec.

1 RMS ch:1 B:10-1000Hz NS:32768 T:8s	1/1;49.7Hz
14.9mm/s	
Nyní změňte délku na 1 sec a nastavte průměrování 8.	
1 RMS ch:1 B:10-1000Hz NS:4096 T:1s	8/8;49.7Hz
14.9mm/s	

Nyní jsou oba výsledky stejné. Je tak vidět rozdíl v měření RMS a 0-P. Měření RMS vypovídá o celkové energii signálu za dobu měření. Je lhostejné, zda se jedná o průměry či jedno dlouhé měření.

Délku měření lze nastavit i v počtu otáček. Tacho snímač musí být použit.

Typ: širokopásmová	i hodnota
volně (bez triggeru),	stálé měření
Kanál:	1
Jednotka:	mm/s
Hodnota:	RMS
Pásmo fmin[Hz]:	10
Pásmo fmax[Hz]:	1000
	fs=4096Hz
Řízení trigry:	zapnuto
Počet trigrů:	16
Typ průměro∨ání:	lineární
Průměro∨ání:	∨ypnuto
Uložit	
1 RMS ch:1 B:10-1000Hz F	र:16

15.3mm/s

Použití limitních hodnot podle ISO 10816

Pro hodnocení širokopásmových měření lze využít limitních hodnot podle ISO 10816. Podle závažnosti vibrací jsou pak použity barevné symboly zelená/oranžová/červená.

V Nastavit/ ISO Nastavení stroje nastavte správné hodnoty parametrů. Hodnocení se používá pouze pro širokopásmové RMS měření rychlosti vibrací v pásmu 10-1000Hz.

1 RMS ch:1 B	1/1;17.7Hz	
	🛑 8.30mm/s RMS	ISO 10816: Skupina1, Tuhé přes 7.1mm/s RMS

Barva kruhu určuje stav stroje (pro A nebo B je zelená, pro C je oranžová a pro C je červená), uvnitř kruh je zobrazena třída A až D. V okně je také informace o zařazení stroje a typu uložení. Dole je zobrazena informace, která limitní hodnota je překročena.

ADASH s.r.o. **Měření spektra**

Тур:	spektrum
👘 volně (bez triggeru) j	edno měření
Full Spektrum:	ne
Kanál:	1
Okno:	hanning
Jednotka:	mm/s
Zoom spektrum:	ne
Pásmo fmin[Hz]:	10
Rozsah[Hz]:	400
	fs=1024Hz
Počet čar:	1600
t=4	s,df=0.25Hz
Typ průměrování:	lineární
Průměrování:	8
	total t=32s
Překrý∨ání:	0%
Uložit	

Pod názvem spektrum je popis nastaveného trigru. Vzorkovací frekvence **fs**, délka časového signálu pro spektrum **t** a frekvenční rozlišení **df** jsou napsány menším písmem pod vztažnými parametry.

1 spec ch	1:1 R	:10-400)Hz L	.:1600 T:	4s				2/8;4	2.1Hz
0	.50] n	nm/s RM	Ş				f=16.5;	ord=0,392; \	(=0.118;to	t=0.695
o	.25									
0	.00			terres and the design of						Hz
	Ó	5	50	100	150	200	250	300	350	400

Údaje v pravém horním ukazují průměrování (2/8) a otáčky. Pod nimi jsou údaje o poloze kurzoru, řád (frekvence / otáčky), jeho hodnota a celková RMS hodnota spektra.

Pásmo fmin umožňuje nastavit HP filtraci pro odstranění DC složky. Pokud nepotřebujete informace pod 10Hz, zvolte fmin 10Hz. Výrazně tak urychlíte přípravu měření.

Překrývání umožňuje zrychlit proceduru průměrování. Např. 75% překrytí znamená, že 75% již zpracovaného signálu spolu s 25% nového měření bude použito pro další průměr.

Full spektrum

Тур:	spektrum
volně (bez triggeru),je	edno měření
Kanál A:	1
Okno:	hanning
Kanál B:	2
Okno:	hanning
Jednotka:	μm
Pásmo fmin[Hz]:	10
Rozsah[Hz]:	100
	fs=256Hz
Počet čar:	400
t=4:	s,df=0.25Hz
Typ průměrování:	lineární
Průměrování:	4
	total t=16s
Překrývání:	0%
Full Spektrum:	ano
Uložit	

Ve spektru nastavte parametr Full Spektrum na ano.

Full spektrum se počítá jako FFT komplexního signálu, kde jako imaginární hodnoty jsou hodnoty signálu druhého kanálu.

Před výpočtem FFT probíhá přepočet signálů podle nastavených poloh snímačů stejně jako při výpočtu orbity. Proto nezapomeňte správně nastavit polohy snímačů.

1 full spectrum ch:1;2 R:10-100Hz L:400 T:4s										4/4;25	5.0Hz
200	µm F	RMS					f=2	5/-25;ord=	1/-1;Y=19	00/70.6;t	ot=297
200		1									
100	4 1										
0				λ.			X		λ.		Hz
-1	100	-80	-60	-40	-20	Ó	20	40	60	80	100

Poznámka: Ke kurzoru je automaticky zobrazen i kurzor s opačnou frekvencí (opačný kurzor). Je vykreslen odlišnou barvou (zde fialovou). Stavový řádek kurzoru je formátován tak, že před znakem / je vypsána hodnota kurzoru a za znakem / je hodnota opačného kurzoru.

Pozor! Při nastavování parametrů full spektra je důležité zvolit správné pořadí kanálů. Je-li nastavení chybné, bude přehozena kladná a záporná strana. Zvolte kanály tak, aby byl směr otáčení hřídele od snímače A ke snímači B. Nejprve najděte úhel mezi A a B menší než 180° (obvykle 90°). Šipka rotace musí být nejdříve na A potom na B.

Na následujícím obrázku je AC snímač 1 v pozici -90° (nastaveno v **Snímače / AC1 / Pozice**) a AC snímač 2 v pozici 180° (nastaveno v **Snímače / AC2 / Pozice**). Více o nastavování pozice snímačů se dočtete v kapitole **Vlastnosti snímačů**. Nastavení kanálu v měření full spektra i orbity je: **Kanál A** na prvním AC kanále, **Kanál B** na druhém AC kanále. V grafu orbity vidíte, že směr od A k B je proti směru otáčení hodinových ručiček (uvažujeme směr, ve kterém je úhel menší než 180°) a to je směr otáčení hřídele. Šipka orbity má stejný směr jako otáčky hřídele.

Jestliže se hřídel otáčí opačným směrem, musíte přehodit pořadí kanálů. Na dalším obrázku je **Kanál A** na druhém kanále a **Kanál B** na prvním kanále. Směr otáčení je opět dán od A k B a zde je proto ve směru otáčení hodinových ručiček. Na obrázku vidíte, že ačkoli v grafu orbity se kromě označení kanálů nic nezměnilo, graf full spektra má přehozenou kladnou a zápornou osu. Šipka orbity má opačný směr než otáčky hřídele.

72 Další informace naleznete na www.adash.com nebo napište dotaz na email: info@adash.cz
ADASH s.r.o. **Měření časového signálu**

Vstupní signál prochází pásmovým filtrem (fmin,fmax). Červené svislé čárky označují tacho vstupy (tzn. průchod značky na hřídeli před tacho sondou).

Průměrování časového signálu

Pro průměrování je potřeba Nastavit/Nastavení trigru/Zdroj trigru na nějakou hodnotu.

Průměrování má za následek snížení šumu v signálu. Otáčková frekvence je lépe viditelná. Vedle hodnot kurzoru jsou zobrazeny hodnoty RMS (totRMS) a 0P (tot0P) zobrazeného časového signálu.

Časový signál se stejnosměrnou složkou (gap)

Při měření časového signálu **posunutí** můžete souběžně měřit hodnotu gap z DC kanálu. Naměřený gap se při zobrazení přičítá k naměřenému signálu.

Jak připojit snímač pro měření gap

Snímač posunutí připojte do přístroje tak, aby byl signál přiveden do libovolného AC a zároveň do libovolného DC kanálu. V kapitole **Signálové a spouštěcí konektory** můžete najít, kde jsou piny jednotlivých kanálů. Kabel se správným propojením si můžete objednat od výrobce přístroje.

Jak nastavit snímač

V menu **Snímače** vyberte AC kanál, ke kterému jste připojili snímač. Nastavte jeho citlivost a ostatní hodnoty jako obvykle. Pro snímač posunutí je navíc k dispozici položka **DC gap kanál**. Ve výchozím stavu není definována. Nastavte ji na číslo DC kanálu, kam jste připojili snímač (obvykle je stejné jako číslo AC kanálu). Musíte také nastavit hodnoty DC kanálu. V menu Snímače vyberte DC kanál, ke kterému jste připojili snímač a nastavte jeho hodnoty stejné jako pro AC kanál. DC snímač navíc obsahuje nastavení offsetu.

Měření signálu

Nastavte a změřte časový signál jako při běžném měření. Hodnota změřeného signálu se nyní nepohybuje kolem nuly, ale je namodulována na stejnosměrnou hodnotu gap změřenou z přiřazeného DC kanálu.

Na prvním obrázku je změřený signál bez nastaveného gap kanálu.

Na druhém obrázku je tentýž signál posunutý o hodnotu gap.

Měření g-demod spektra

Typ: g-demod s	spektrum
volně (bez triggeru),s	stálé měření
Kanál:	1
Okno:	hanning
Jednotka:	g
DEMOD fmin[Hz]:	500
DEMOD fmax[Hz]	: 25600
f	s=65536Hz
Rozsah[Hz]:	800
Počet čar:	800
t	=1s,df=1Hz
Typ průměro∨ání:	lineární
Průměro∨ání:	8
	total t=8s
Překrý∨ání:	0%
Uložit	

Příklad: Demodulovaná frekvence 92Hz s harmonikami. Jednotky nelze měnit, může být použita pouze g jednotka pro zrychlení.

ADASH s.r.o. **Měření g-demod časového signálu**

Typ: g-demod časo∨ý signál		
volně (bez triggeru),stálé měření	
Kanál:	1	
Jednotka:	g	
DEMOD fmin[Hz]:	500	
DEMOD fmax[Hz]:	25600	
	fs=65536Hz	
Počet ∨zorků:	8192	
	t=0.125s	
Uložit		

Tahle funkce umožňuje zobrazit signál, když je použita standardní obálková demodulace. Jednotku nelze měnit, měření je dostupné pouze pro zrychlení. Jakékoliv integrace signálu nejsou povoleny.

Měření g-demod širokopásmové hodnoty

Typ: g-demod širokopásmová hodnota		
volně (bez trigge	eru),stálé měření	
Kanál:	1	
Jednotka:	g	
Hodnota:	RMS	
DEMOD fmin[Hz]:	500	
DEMOD fmax[Hz]:	25600	
	fs=65536Hz	
Počet ∨zorků:	8192	
	t=0.125s	
Typ průměro∨ání:	lineární	
Průměro∨ání:	∨ypnuto	
	total t=0.125s	
Uložit		

Velmi podobné běžnému širokopásmovému měření. Signál je filtrován v pásmu (DEMOD, DEMOD fmax) a následně modulován obálkou.

Měření je dostupné pouze pro zrychlení. Jakékoliv integrace signálu nejsou povoleny.

1 g-demod RMS ch:1 B:500-25600Hz NS:8192 T:0.125s	1/1;25.1Hz
4.32g	

Měření amp+fáze

Jedná se o měření amplitudy a fáze na otáčkové frekvenci nebo jejím násobku (řádu).

Typ: volně (bez	amp+fáze trigru), retrig	
Kanál: Jednotka: Typ průměrování: Průměrování: Řád: Rozlišení: Uložit	1 mm/s lineární vypnuto 1 otáčky / 4 t = 4 ot.	
1 1x amp+phase ch:1		1/1;50.0Hz
g).71 mm	/s RMS; -90.1°

Ve výchozím stavu je amp+fáze měřená na otáčkové frekvenci (Řád = 1). Můžete však definovat jakoukoli hodnotu jako Řád. Např., jestliže chcete měřit amplitudu a fázi na 1 / 3 otáčkové frekvence, zadáte hodnotu

řádu 0.333333. Hodnota řádu je zobrazena v informačním řádku grafu, "1x" na obrázku výše znamená hodnotu řádu 1, tedy je měřená amplituda a fáze na otáčkové frekvenci.

Poznámka! Nezapomeňte nastavit vhodné rozlišení pro požadovanou hodnotu řádu. Viz Rozlišení.

Měření orbity

Тур:	orbita	
volně (bez triggeru)	stálé měření	
Kanál A:	1	
Kanál B:	2	
Jednotka:	μm	
Pásmo fmax[Hz]: 800	
	fs=2048Hz	
Řízení trigry:	∨ypnuto	
Počet ∨zorků:	4096	
	t=2s	
Průměro∨ání:	∨ypnuto	
	total t=2s	
Uložit		

A1 znamená, že **1**. kanál je použit v orbitě jako kanál **A**. B2 znamená, že **2**. kanál je kanál **B**. Polohy značek A1 a B2 odpovídají nastaveným úhlům snímačů (viz. **Snímače**). Znalost těchto úhlů umožňuje vykreslit správný tvar orbity.

Měření orbity se stejnosměrnou složkou (gap)

Orbita se skládá ze dvou časových signálu. Každému časovému signálu můžeme změřit stejnosměrnou složku (gap). Výsledná orbita je pak vykreslena posunutá v rovině. Jak nastavit měření gap najdete v kapitole **Měření** časového signálu se stejnosměrnou složkou (gap). Měření orbity nastavíte stejně, jen musíte nastavit dva kanály.

ADASH s.r.o. Měření filtrované orbity

Тур:	filtrovaná o tacho,stálé m	rbita něření
Kanál A:		1
Kanál B:		2
Jednotka	a:	μm
Řády:		1-10
Typ průn	něrování: line	eární
Průměro	vání: vyp	nuto
	Uložit	

Filtrovaná orbita je orbita vypočítaná ze dvou řadových analýz. Pro přepočet musí být správně nastaveny pozice snímačů, stejně jako pro běžnou orbitu.

V menu Vlastnosti Grafu můžete zapínat/vypínat zobrazené řády.

Měření otáček

Musí být připojen snímač otáček (tacho) a na hřídel umístěna značka, aby byl vytvořen jeden puls na každou otáčku. Např. při měření časového signálu jsou příchody pulsů označeny svislou červenou čárkou.

ADASH s.r.o.			Adas
Typ: volně (bez trig Jednotka: Typ průměro Průměro∨ání Ulo	<mark>otáčky</mark> _{geru),stálé měření Hz ∨ání: lineární ∵ ∨ypnuto <mark>žit</mark>}		
1 speed			1/1
		25.1Hz	

Měření otáček se provádí v odděleném procesu 8 krát za sekundu. Hodnota otáček se počítá z každých příchozích tří pulsů. Lze zapnout průměrování.

Měření ACMT

Toto měření umožňuje snímat dlouhé časové signály i ve vysokém frekvenčním rozsahu až do 25,6kHz. Signál je poté komprimován (podobně jako MP3 v audio oblasti). Algoritmus ACMT převzorkuje signál ze základní vzorkovací frekvence (64kHz) na nižší vzorkovací frekvenci (Vzorkování ACMT).

Procedura zachovává celkovou RMS hodnotu signálu (je-li parametr **Hodnota** nastaven na **RMS**) nebo špičkovou hodnotu (je-li parametr **Hodnota** nastaven na **PEAK**). RMS umožňuje lepší trendování.

Тур:	ACMT
volně (bez triggeru), stálé	měření
Kanál:	1
Jednotka:	g
Hodnota:	RMS
Pásmo fmin[Hz]:	500
Vzorkování ACMT[Hz]:	1024
Počet vzorků:	4096
	t=4s
Uložit	

Původní časový signál 8 sekund dlouhý, který obsahuje rázy. Signál má 524288 vzorků.

ACMT signál. Vidíte stejné rázy, ale signál obsahuje pouze 8192 vzorků.

Měření řádové analýzy

Měření amplitudy a fáze na otáčkové frekvenci a zvolených násobcích otáčkové frekvence.

ADASH s.r.o.

Typ: řádo volně (bez	vá analýza trigru), retrig	
Kanál:	1	
Jednotka:	μm	
Řády:	1-10	
Typ průměrování:	lineární	
Průměrování:	vypnuto	
Rozlišení:	otáčky / 4	
Noziisem.	t = 4 ot.	
Uložit		

Měření řádového spektra

Typ: řádové :	spektrum
 volně (bez triggeru),st 	tálé měření
Kanál:	1
Jednotka:	mm/s
Pásmo fmax[Hz]:	3200
Nízké c	táčky=2Hz
Počet čar:	400
Řády:	25
	16 ot.
Typ průměrování:	lineární
Průměrování:	∨ypnuto
Uložit	

V nastavení **řádového spektra** můžete volit hodnotu frekvenčního pásma (**Pásmo fmax**). Každá frekvence nad touto hranicí je ze signálu odfiltrovaná a každý řád, jehož frekvence překročí tuto hranici, má nulovou hodnotu. Frekvenci řádu dostaneme, když vynásobíme jeho hodnotu aktuálními naměřenými otáčkami. Proto jestliže jsou aktuální otáčky vysoké a fmax nízké, mohou se ztrácet hodnoty na vysokých řádech. Pokud Vám tyto hodnoty chybí, můžete zvýšit fmax. Ale dejte pozor. Zvyšováním fmax rovněž zvyšujete hodnotu minimálních otáček, které je přístroj schopen změřit. Tato hodnota je zobrazena v poznámce pod parametrem **Pásmo fmax** jako **Nízké otáčky**. Ale závisí i na nastavení počtu čar a řádů. Jestliže během měření klesnou otáčky pod tuto hodnotu, nastává chyba měření typu **Nízké otáčky**.

Pod počtem řádů je uveden počet otáček potřebných k jednomu odečtu hodnoty (doba měření řádového spektra lze stanovit v otáčkách, obdobně jako lze doba měření frekvenčního spektra stanovit v jednotce času). Počet otáček je dán podílem počtu čar a počtu řádů. K odměření řádového spektra je potřeba alespoň 4 otáček. Proto musí být počet čar alespoň 4x vyšší než počet řádů.

ADASH s.r.o. **Řádové full spektrum**

Typ:		
Kanál A:	nggeru),jev	1 1
Kanál B:		2
Jednotka:		μm
Pásmo fma	ax[Hz]:	3200
	Nízké o	táčky=4Hz
Počet čar:		400
Řády:		10
•		32 ot.
Typ průmě	rování:	lineární
Průměrová	iní:	4
Full Spektr	um:	ano
	Uložit	

V řádovém spektru nastavte parametr Full Spektrum na ano.

Full spektrum se počítá jako FFT komplexního signálu, kde jako imaginární hodnoty jsou hodnoty signálu druhého kanálu.

Před výpočtem FFT probíhá přepočet signálů podle nastavených poloh snímačů stejně jako při výpočtu orbity. Proto nezapomeňte správně nastavit polohy snímačů.

Poznámka: Ke kurzoru je automaticky zobrazen i kurzor s opačnou frekvencí (opačný kurzor). Je vykreslen odlišnou barvou (zde fialovou). Stavový řádek kurzoru je formátován tak, že před znakem / je vypsána hodnota kurzoru a za znakem / je hodnota opačného kurzoru

Pozor! Při nastavování parametrů full spektra je důležité zvolit správné pořadí kanálů. Zvolte kanály tak, aby byl směr otáčení hřídele od snímače A ke snímači B. Více viz kapitolu **Full spektrum**.

Měření posunu fáze

Měření posunu fáze (mezi dvěma kanály A a B) poměru amplitud a koherence na zadané nebo otáčkové frekvenci.

Typ: volně (be	posun fáze ez trigru), retrig	
Kanál A:	1	
Kanál B:	2	
Průměrování:	vypnuto	
Frekvence:	otáčky	
Řád:	1	
Rozlišení:	otáčky / 4	
	t = 4 ot.	
Uložit		

I 1x phase shift ch:1;2	1/1;50.0Hz
ΦB-ΦA: +38.3°; B/A: 2.44; coh: 0.91	

ADASH s.r.o.

- Výsledek zobrazuje:
- posun fáze ve stupních
- poměr amplitud (ampl B / ampl A)
- koherenční hodnotu

Pokud je fáze stabilní, pak musí být koherence větší než 0.8.

Ve výchozím stavu je posun fáze měřen na otáčkové frekvenci (Řád = 1). Můžete však definovat jakoukoli hodnotu jako Řád. Např., jestliže chcete měřit fázový posun na 1 / 3 otáčkové frekvence, zadáte hodnotu řádu 0.333333. Hodnota řádu je zobrazena v informačním řádku grafu, popisek "*1x*" na obrázku výše znamená hodnotu řádu 1, tedy je měřen posun fáze na otáčkové frekvenci.

Dále můžete zadat jakoukoli frekvencí pomocí parametru Frekvence. V tomto případě není parametr řád dostupný, parametr Rozlišení se zadává jako zlomek zadané frekvence a zadaná frekvence je zobrazena v informačním řádku grafu za popiskem "*f*."

phase shift ch:1;2 f:38Hz 1	/1;50.0Hz
ФВ-ФА: +98.3°; В/А: 0.342; coh: 0.91	

Měření DC

Měří se signál na DC vstupech.

Тур:	dc
volně (bez triggeru),st	tálé měření
Ruční vstup:	ne
Kanál:	1
Jednotka:	°C
Typ průměro∨ání:	lineární
Průměrování:	∨ypnuto
Uložit	

1 dc ch:1

22.6 °C

Pokud nechcete hodnotu měřit, ale chcete ji zadat, nastavte parametr **Ruční vstup** na **ano**. Všechny ruční vstupy sestavy jsou zadávány před zahájením měření. Po stisku tlačítka **Start** se objeví pro každý vstup okno, kam hodnotu vložíte a potvrdíte.

Zadej hodnotu [°C] Ruční vstup (Graf3)
22.6

ADASH s.r.o. **Měření frf - frekvenční odezva**

Тур:	fresp
👘 volně (bez triggeru	u),stálé měření
Vstup:	1
Okno:	transient
Posun[ms]:	97.2
Délka[ms]:	6.35
Výstup:	2
Okno: e	exponential
Posun[ms]:	. 97.7
Délka[ms]:	196
Typ ∨ýsledků:	H1
Rozsah[Hz]:	800
	fs=2048Hz
Počet čar:	800
	t=1s,df=1Hz
Průměro∨ání:	4
	total t=4s
Překrý∨ání:	0%
Uložit	

Od verze 2.32 je koherence zobrazena v grafu amplitudy. Krátká vodorovná čárka protínající osu Y označuje hodnotu = 1.

Zobrazený graf odpovídá těmto nastaveným vlastnostem:

Pozice kurzoru [Hz]: 0
Měřítko:	auto
Osa X:	lin
Osa Y:	dB
Rozsah[dB]:	80
Pohled Fresp:	ampl,fáze
Primární kurzor:	amplituda
Uložit	-

Pokud nastavíte Pohled FrespB na čas, pak se zobrazí oba vstupní časové signály (poslední změřené).

Na grafech vstupních signálů se snadno nastavují polohy a délky oken. Tlačítkem **Význam šipek** lze nastavit následující šipky vpravo nahoře jako **Posun** nebo **Délka**. Tlačítkem vlevo nahoře pak přepínáme vstupy 1, 2 nebo oba najednou 12. Pomocí šipek vpravo lze pak snadno nastavit polohu okna (Posun) a délku. Měření frekvenční odezvy nepoužívá žádný HP filtr. Pokud byste chtěli srovnávat vstupní signály, musíte i v měření časového signálu filtraci vypnout.

ADASH s.r.o.

Adash 4400 – VA4Pro (II)

Měření oktávového spektra, hladiny hluku a ekvivalentní hladiny hluku

Popis všech parametrů je v popisu módu Oktávová analýza. Exponenciální průměrování není v módu Analyzátor dostupné.

Měření center line

Měření používané pro hřídele turbín. Hodnoty definují statickou polohu hřídele v kluzném ložisku. Na dva DC vstupy musí být připojen bezkontaktní snímače posunutí.

Тур: с	enter line
volně (bez triggeru)	stálé měření
DC Kanál A:	1
DC Kanál B:	2
Jednotka:	μm
Průměro∨ání:	∨ypnuto
Uložit	

Existuje vztah mezi **center line** a **orbitou**. Také je potřeba dvou snímačů upevněných ve známých úhlových pozicích. V orbitě vidíme průběh kmitání hřídele okolo střední polohy 0,0. V center line vidíme skutečnou polohu hřídele v ložisku bez zobrazení kmitání.

1/1:-Hz

1 center line ch:1;2

A:2767µm; B:1768µm; X:-706µm; Y:-3206µm

Jsou zobrazeny dvě dvojice výsledků. Hodnoty A,B jsou vzdálenosti snímačů od referenční polohy definované ofsetem. Hodnoty X,Y ukazují tyto polohy přepočtené na kartézské osy X a Y (pozice (0,0) je pozice, kdy hodnoty A,B jsou rovny jejich offsetům.

V případě zpracování trendu se zobrazí polární graf.

Měření Smax

Тур:	Smax		
volně (bez triggeru),	stálé měření		
Kanál A:	1		
Kanál B:	2		
Jednotka:	μm		
Pásmo fmax[Hz]:	800		
	fs=2048Hz		
Řízení trigry:	∨ypnuto		
Počet ∨zorků:	512		
	t=0.25s		
Typ průměro∨ání:	lineární		
Průměro∨ání:	∨ypnuto		
t	otal t=0.25s		
Uložit			

1 Smax ch:1;2 B:800Hz NS:512 T:0.25s	4/4;50.9Hz
115µm	

Jedná se o běžné Smax měření maximálního vektorového výkmitu na orbitě. Pozice snímačů musí být nastaveny stejně jako při měření orbity.

Na následujícím obrázku vidíte hodnotu Smax vyznačenou v orbitě.

1 orbit ch:1;2 B:10-1000Hz NS:409	96 T:1s					1/1;26	5.0Hz
300]µm					t=0ms;X	(=143;Y=	-54.9
200-	(A1)	(B2)					
100-							
0-	(N					
-100-	Sm	ax/					
-200-		1/m					
-300		V.					μm
-1000 -800	-600 -400 -200	0 200	400	600	800	1000	

Další informace naleznete na www.adash.com nebo napište dotaz na email: info@adash.cz

ADASH s.r.o.

Měření komplexního Smax

1/1;50.9Hz

Jedná se o měření maximálního výkmitu na orbitě spolu s úhlem (tj. pozicí) tohoto výkmitu. Jinými slovy, je to Smax s pozicí maximálního výkmitu. Pozice snímačů musí být nastaveny stejně jako při měření orbity.

Na následujícím obrázku vidíte hodnotu a pozici Smax vyznačenou v orbitě.

1 orbit ch:1;2 B:	10-1000H	z NS:409	06 T:1s								1/1;2	6.0Hz
300]µr	n									t=0ms;>	(=143;Y	=-54.9
200-					A1	\wedge	B2					
100					/	_						
0-						(
-100-					Sma	×7						
-200-						1/~						
-300					1	-						μm
	-1000	-800	-600	-400	-200	0	200	400	600	800	1000	

Poznámka! Pozice maximálního výkmitu nemusí být vždy jednoznačná. Jako příklad uvažujme orbitu ve tvaru kružnice (viz obrázek níže). Úhel Smax je v tomto případě náhodné číslo, a když tento Smax průměrujeme, pak je úhel nedefinovaný.

ADASH s.r.o. **Měření cepstra**

Тур:	cepstrum
Kanál	u),stale mereni 1
Okno:	hanning
Jednotka:	g
Pásmo fmin[H	z]: 10
Rozsah[Hz]:	800
Dožot žov	fs=2048Hz
Pocet car:	400 t=0.5c.df=2Hz
Průměro∨ání:	vvpnuto
	total t=0.5s
Překrý∨ání:	0%
Uloži	t

Algoritmus výpočtu cepstra ve cepstrum(x) = inv (fft(log10(abs(fft(x)))))

- x frekvence
- fft fourierova transformace
- abs absolutní hodnota
- log10 dekadický logaritmus
- inv inverzní funkce

Měření ultrazvuku

Typ: ultra:	zvuk
volně (bez triggeru),stálé m	iěření
Uložit	

1 ultrasound					-Hz
	Úroveň: 52	dB,	Shock Factor:	1.4	

Měření ve frekvenčním pásmu 30 – 50 kHz. V průběhu měření je zobrazena aktuální hodnota úrovně ultrazvuku a tzv. **Shock Factor**. Jedná se o hodnotu, která charakterizuje zastoupení rázů v signále. Čím vyšší je číslo, tím více rázů signál obsahuje. Hodnota kolem 1.5 znamená čistý tón (sinový signál). **Poznámka:** Pro měření je potřeba mít připojen a správně nastaven snímač ultrazvuku.

Podrobný popis je v kapitole o modulu Ultrazvuk.

ADASH s.r.o. **Záznam**

Тур:	záznan volně (bez triggeru) stálé měřer	n ní
Fs[Hz]:	65536	ô
	Rozsah=25600H	Ζ
AC1:	zapnuto	С
AC2:	vypnuto	С
AC3:	vypnuto	С
AC4:	vypnuto	С
DC1:	vypnuto	о
DC2:	vypnuto	о
DC3:	vypnuto	о
DC4:	vypnuto	о
Kanál pro	Trigger: zapnuto	о
Délka [m	nuty]:	1
Start záz	namu: volně (bez triggeru)
	Uložit	ŕ

1 record

00:00:25 / 00:01:00

Vytvoří záznam v průběhu měření. Ten je pak možné analyzovat v počítači pomocí virtual unit (viz kapitola **A4410 Virtual Unit**).

Podrobný popis je v kapitole o modulu **Záznam**.

<u>Vyvažování</u>

Úvod

Proces vyvažování je založen na měření amplitudy a fáze na otáčkové frekvenci. Va4Pro používá v módu vyvažování speciální funkce, které odstraňují vlivy dané šumem změnou otáček apod. Teoretické základy vyvažování nejsou obsaženy v našem manuálu. Najdete je v odborné literatuře.

Projekt

Základní strukturou vyvažování je projekt. Odpovídá jednomu vyvažování. Můžete také použít stejný projekt opakovaně na stejném stroji. Naměřená data pak budou přepsána. Projekt obsahuje všechna naměřená a zadaná data, která byla použita během vyvažování.

Průběh vyvažování sestává ze základních kroků:

- Zadání jména projektu
- Určení typu stroje a počtu rovin
- BĚH 1 Počáteční měření amplitudy vibrací a fáze ve všech rovinách rotoru.
- Postupné umístění zkušebního závaží na všechny roviny rotoru.
- BĚH 2 Měření odezvy na zkušební závaží ve všech rovinách.
- Výpočet a umístění konečných závaží na všechny roviny.
- BĚH 3 Kontrola úspěšnosťi vyvažování.
- Umístění Trim závaží měření pro další zlepšení úspěšnosti výsledeku.

Obrazovky projektu

Průběh každého kroku je popsán na jedné obrazovce.

Pomocí šipek nahoru/dolů se obrazovky přepínají.

Je třeba upozornit na následující skutečnost. Pokud se v obrazovkách vrátíte zpět a provedete opakovaně měření nebo zadávání hodnot, budou pak vymazána všechna data v následných obrazovkách. Tato data odpovídala původně naměřené či zadané hodnotě, kterou jste změnili. Všechny tyto obrazovky proto musí být naměřeny znovu.

Úvodní obrazovka

Zobrazí se seznam uložených projektů, nebo nápis Prázdný. Čas poslední změny projektu je zobrazen v pravém horním rohu.

Żvolte jeden projekt nebo použijte tlačítko Projekt pro vytvoření nového.

Page Up	Seznam projektů Balancer01 Balancer02 Fan KV/90		 06/22/201	<u>7 01:57:25p.m.</u>	
Page Down					Ŧ
					ок
Najdi					
Multi vypnuto					
11:07a.m. 06/28/2017	Projekt	Snimače	Nastavit	Hlavní obrazovka	100

Po stisknutí tlačítka Projekt se zobrazí nabídka funkcí:

Vytvoř
Kopíruj
Přejmenuj
Smaž
Smaž data
Export

Vytvoř vytvoření nového projektu.

Kopíruj vytvoření kopie projektu (podobně jako funkce Ulož jako v MS Word). Uloží se pouze hlavičkové údaje (jméno stroje, typ, atd.). Nejsou uložena žádná naměřená data.

Přejmenuj přejmenování projektu.

Smaž smazání projektu.

Smaž data smazání pouze naměřených dat.

Export zkopírování projektu i s daty na VA4_DISC.

Vyvažovací protokol Graf vektorů Celková hmota

Vyvažovací protokol vytvoří zprávu o vyvážení (MS Word) a uloží ji na VA4_DISC.

Graf vektorů zobrazení vektorových výsledků (ampl/fáze) všech běhů. Graf je také součástí vyvažovacího protokolu.

R1-RUN1, R3-RUN3, T1-T3 -trimy 1-3.

Celková hmota zobrazí celkovou hmotu přidanou během vyvažování (pokud se neodebírá testovací závaží, je k celkové hmotě připočtena i hmota testovacího závaží)

Nový projekt

Stiskněte tlačítko Projekt a zvolte Vytvoř. Zadejte jméno nového projektu a potvrďte. Nový projekt se zobrazí v seznamu a bude aktivní (tj.vybrán). Štiskněte OK a otevřete jej. Zobrazí se menu se základním nastavením vyvažování (viz. další oddíl). Definujte vlastnosti nového projektu a potvrďte OK.

Nastavení vyvažování

Pod tímto tlačítkem se skrývají vlastnosti projektu. Po stisknutí se objeví menu s několika položkami.

Základní nastavení

 Počet rovir 	n:	jedna			
Zobrazení:		nedef			
Směr otáčení:		CW			
Kanál pro bod:		1			
Odebrat test.závaží: ano		ží: ano			
Vyvažovac	í hmoty:	: přidej (připevni)			
Lopatky:		nepoužity			
Režim měi	ření:	jedno měření			
Průměrová	iní:	vypnuto			
Rozlišení:		otáčky / 4			
	Uld	ožit			
Roviny	<u>jedna,</u> o	dvě počet vyvažov	acích rovin		
Zobrazení	Výběr o	brázků strojů. V nabído	ce je několik obrázků pro jedno nebo dvou rovinové vyvažování.		
Pohled	<u>pravý,</u> l	levý Pro lepší orier	taci zvolte pohled na stroj		
Rotace	<u>cw</u> , cc	CW Ve směru neb	o proti směru hodinových ručiček		
Vstupy	<u>jeden</u> , o	dva Mohou být použity jeden nebo dva ÁC vstupy (snímače). Platí pouze pro dvou rovinové vyvažování.			
Kanál 1-4	Číslo A(C vstupu které bude použito pro snímač namontovaný na ložisku. (pouze pro jedno rovinové vyvažování)			
Kanál A	1-4	Číslo AC vstupu které bude použito pro snímač namontovaný na ložisku A (pouze pro dvou rovinové vyvažování)			
Kanál B	1-4	Číslo AC vstupu které bude použito pro snímač namontovaný na ložisku B (pouze pro dvou rovinové vyvažování)			
	Pozn.: 2 Nemá ta kterékol	Značení ložisek písme aké vliv na postup výpo liv ložisko a písmenem	ny A a B je pouze symbolické a nemá vztah k rovinám 1 a 2. očtu vyvažovacího procesu. Písmenem A můžete označit B druhé ložisko.		
Odebrat test. z	závaží Po běhu	ano, ne u s testovacím závažím	n může být závaží na rotoru ponecháno nebo odstraněno.		
Odebrat test. z	závaží (R Pro dvo	≀ovina 1), Odebrat tes purovinovou úlohu můž	t. závaží (Rovina 2) <u>ano,</u> <u>ne</u> ete nastavit odebírání závaží pro každou rovinu zvlášť.		
Vyvažovací hn	noty				
	přidej (<u>připevní)</u> vyvažo	ovaci závaží se přidávají		
1	odeber	(odvrtej) vyvazo			
Соратку		mezi lopatky.	ventilatoru), tento parametr pouzijeme pokud zavazi rozdelujeme		
Mód měření		jedno měření, stálé n jednu hodnotu měření můžete pozorovat více zastavíte měření na ho	něření Po spuštění (tlačítkem Start) možnost zobrazit pouze nebo kontinuálně zobrazovat aktuální hodnotu. Při stálém měření hodnot a vyhodnotit jejich změnu v čase. Tlačítkem STOP odnotě kterou chcete použít.		
Průměrování		je možné nastavit průr	něrování více než jedné hodnoty měření		
Rozlišení		vysvětlení viz. Rozliše	ní APS		

ADASH s.r.o. Nastavení jednotek

Amplituda:	mm/s
Hodnota:	RMS
Otáčky:	RPM
Hmotnost:	g
Uložit	

Amplituda výběr jednotky podle typu použitého snímače

Hodnota RMS, 0-P, P-P

Dokud nezadáte tuto hodnotu, bude použito Spektrum Nastavení / Hodnota.

Otáčky	výběr jednotky otáček
Hmotnost	výběr jednotky hmotnosti

Údaje o rotoru

Hmotnost rotoru[kg]:	-
Poloměr umístění zá∨aží[mm]:	-
Stupeň jakosti ∨y∨ážení:	-
Uložit	

Všechny tyto parametry jsou volitelné. Umožňují vypočítat stupeň jakosti vyvážení podle normy ISO1940.Hmotnost rotoruhmotnost rotoru v kilogramechPoloměr umístění závažípoloměr (v mm) na kterém bude umístěno vyvažovací závaží,
pro každou rovinu může být různýStupeň jakosti vyváženípožadovaný stupeň jakosti vyvážení dle ISO 1940,

je-li definován, bude nabídnuta doporučena hodnota testovacího závaží.

ADASH s.r.o. Vyvažování v jedné rovině

BĚH 1

Červeně zbarvený domek je doporučené místo měření. Můžete použít jakékoliv jiné pokud je vhodnější, tzn. např. jsou na něm vyšší hodnoty vibrací.

Stiskněte tlačítko START. Proběhne základní měření stroje.

Pokud stisknete Ruční zadání dat, pak můžete zadat údaje z klávesnice. Lze tak použít přístroj jako tzv.vyvažovací kalkulačku.

Použijte tlačítko Tab (vlevo) pro přesun mezi parametry.

Amplituda:	12.5 [mm/s RMS]
Fáze:	+56.0 [°]
Otáčky:	25.0 [Hz]

Použijte šipku dolů pro přechod na další obrazovku nebo šipku nahoru pro přechod na předchozí obrazovku.

BĚH 2 – testovací závaží

Použijte tlačítko Zadej test.závaží pro zadání hmotnosti testovacího závaží. Zadejte hmotnost testovacího závaží a potvrďte **OK**. Hodnota může být i záporná, to představuje odebrání hmoty (např. odmontování starého vývažku).

Pokud jste vyplnili Údaje o rotoru pak doporučená hmotnost testovacího závaží je uvedena na dalším řádku.

Stiskněte tlačítko START. Proběhne měření stroje.

Pokud stisknete Ruční zadání dat, pak můžete opět zadat údaje z klávesnice. Použijte tlačítko Tab (vlevo) pro přesun mezi parametry.

Amplituda:	19.0 [mm/s RMS]
Fáze:	+145.0 [°]
Otáčky:	25.0 [Hz]

Po odměření **BĚHu2** bude zobrazen i dynamický faktor měřeného stroje. **DFA** a **DFP** (amplituda a fáze) hodnoty jsou reakce na normované zkušební závaží (mm/s_{RMS} / 1kg bez ohledu na zvolenou jednotku pro vyvažování). Pokud budete v budoucnu stroj vyvažovat znova, můžete tyto hodnoty využít při příštím měření a nemusíte znovu provádět měření s testovacím závažím (BĚH2). Místo toho pouze zadáte hodnoty DFA, DFP. Použijte tlačítko Zadej DF.

DFA:	501
DFP:	+178.6 [°]

Jestliže jsou zadány Hmotnost rotoru a Poloměr umístění závaží v menu Údaje o rotoru, budou zobrazeny hodnoty Nevývaha a Jakost podle normy ISO 1940. Jestliže vám tyto hodnoty postačují, nemusíte pokračovat ve vyvažování.

Nevývaha:	7.76 [gm]
Jakost:	40.0

Poznámka! Jestliže je ponecháno testovací závaží, bude zahrnuto do výpočtu nevývahy.

Použijte šipku dolů pro přechod na další obrazovku nebo šipku nahoru pro přechod na předchozí obrazovku.

BĚH 2 – výsledky

Zobrazí se hmotnost a úhel umístění finálního závaží. Připevněte závaží do požadovaného úhlu. Úhel je počítán od pozice testovacího závaží, který představuje 0 stupňů. Směr úhlu je stejný jako směr otáčení rotoru. Např. +57 znamená umístit závaží do úhlu +57 stupňů ve směru otáčení. Mínus znamená proti směru otáčení.

V případě že máte zadánou hodnotu *Poloměr umístění závaží*, bude na boku zobrazena obvodová vzdálenost vývažku od testovacího závaží.

Vývažek můžete rozdělit do dvou libovolných úhlů (když z nějakého důvodu nemůžete vývažek umístit na vypočítanou pozici). Zvolte menu **Vyvažování / Rozlož vývažek**.

Zadejte hodnotu prvního úhlu

Zadej první úhel [°]	
30	

Potom zadejte hodnotu druhého úhlu.

Zadej druhý úhel [°] 60|

ADASH s.r.o. Na obrazovce pak bude vývažek rozpočítaný do zadaných úhlů.

Testovací závaží odstraněno			
		Poloha test. závaží	
Úhel: Hmotnost:	+30.0 2.30 [g]		
Úhel: Hmotnost:	+60.0 22.9 [g]		

Zvolte menu Vyvažování / Nastav výchozí úhel pro návrat k původnímu výpočtu.

Pokud zadáte počet lopatek, finální závaží se rozdělí mezi nejbližší lopatky, které leží v úhlu vyvažování. Úhel je vždy počítán od pozice testovacího závaží.

Jestliže nemůžete použít vypočítané lopatky, můžete zadat jiné. Zvolte menu Vyvažování / Změň lopatky.

Zadej první lopatku (1 - 5) 1

Potom zadejte číslo druhé lopatky.

Zadej druhou lopatku (1 - 5) 3

Na obrazovce bude výsledek rozpočítaný do Vámi zvolených lopatek.

Zvolte menu Vyvažování / Nastav výchozí lopatky pro návrat k původnímu výpočtu.

RUN 3 - kontrola úspěšnosti

Po montáži závaží proveďte měření úspěšnosti. Opět lze zadat hodnoty ručně. Obrazovka je podobná Běhu 1.

Amplituda:	1.10	[mm/s RMS]	
Fáze:	+36.0	[°]	
Otáčky:	1500	[RPM]	
Běh 1:	12.5	[mm/s RMS]	
Úspěšnost:	91.2	[%]	
Nevývaha:	0.683	[gm]	
Jakost:	6.30		

BĚH 1 amplituda při běhu 1, tzn. před vyvažováním.

Úspěšnost snížení amplitudy v % (1.1mm/s je 8.8% z původních 12.5 mm/s)

Nevývaha zbytková nevývaha po umístění vývažku

Jakost hodnota jakosti (kvality) vyvážení podle ISO 1940 (pokud je zadána hmotnost a průměr rotoru)

Pokud nejste s výsledkem spokojeni, je Vám dole na obrazovce nabídnuto další vyvažovací závaží (TRIM) a jeho umístění. Takové závaží se přidává, tzn. nic se z rotoru neodstraňuje.

Trim 1	
Úhel:	+37.4 [°]
Hmotnost:	2.19 [g]

Po umístění závaží použijte šipku dolů pro přechod na další obrazovku.

TRIM 1 obrazovka je podobná obrazovce Běhu 1. Proveďte měření nebo zadejte údaje. Výsledky pro TRIM 1 se zobrazí stejně jako v Běhu 3.

Amplituda:	0.900 [mm/s RMS]
Fáze:	+59.0 [°]
Otáčky:	1500 [RPM]
Běh 1:	12.5 [mm/s RMS]
Úspěšnost:	92.8 [%]
Nevývaha:	0.559 [gm]
Jakost:	2.50

Pokud stále nejste spokojeni, je nabídnuto další zlepšení TRIM 2. Celý proces lze opakovat dle potřeby. Pokud po přidání dalšího TRIM závaží dojde ke zhoršení stavu, pak jste již dosáhli mechanické meze pro vyvážení. Odstraňte poslední TRIM a vyvažování ukončete.

Vyvažování ve dvou rovinách

BĚH 1

Na rozdíl od vyvažování v jedné rovině je nyní obrazovka rozdělena na dvě části. Každá polovina obsahuje výsledky měření v jedné rovině.

Při měření jedním snímačem je jedna polovina vždy vybrána pro měření. Druhá má šedý odstín. Měření můžete provést v libovolném pořadí, pomocí pravé/levé šipky měníte výběr roviny pro měření. Červeně zbarvené ložisko ukazuje na místo měření.

Při měření dvěma snímači se měření v obou rovinách provede najednou.

Po provedení měření jsou zobrazeny všechny naměřené hodnoty. Hodnoty lze zadat i ručně.

ADASH s.r.o.		Adash 4400 -	- VA4Pro (II)
Balancing A02 Zkušební měřer	2 - Běh 1 1í		
Rovina 1		Rovina 2	
Zavři Projekt			START
Ruční zadání Amplituda:	12.8 [mm/s RMS]	Amplituda: 10.0 [mm/s RMS]	(
dat Fáze: Otáčky:	+35.0 [°] 25.0 [Hz]	Fáze: +156.0 [°] Otáčky: 25.0 [Hz]	G
08:44 25.09.2013 Vyvažování	Snímače Nasta	avení ování Nastavit Projekt	100

Použijte šipku dolů pro přechod na další obrazovku nebo šipku nahoru pro přechod na předchozí obrazovku.

BĚH 2 - zkušební závaží v rovině 1

Práce se zkušebním závažím je stejná jako v jedno rovinové úloze, jen musíme zkušební závaží postupně umístit do obou rovin.

Pokud používáte dynamický faktor, musíte zadat jeho hodnoty do všech příslušných polí.

Na obrazovce se zvýrazní červený disk, který označuje rovinu pro zkušební závaží. Zadejte hmotnost zkušebního závaží a potvrďte **OK**.

Pokud jste vyplnili Údaje o rotoru pak doporučená hmotnost zkušebního závaží je uvedena na dalším řádku.

Použijte tlačítko Zadej test.závaží pro změnu jeho hmotnosti.

Umístěte závaží do roviny 1 a proveďte měření. Úplná obrazovka po provedení všech měření vypadá takto:

ADASH s.r.o.			Adash 4400 -	- VA4Pro (II)
Zadej Balancing A02	2 - Běh 2 acím závažím v rovině 1	_		
test. závaží Test. závaží Doporučeno:	: 75.0 [g] 91.0 [g]	Rovina 2		1
Zadej DF				
Zavři Projekt				START
Ruční zadání dat Amplituda: Fáze: Otáčky:	15.3 [mm/s RMS] +87.0 [°] 25.0 [Hz]	Amplituda: Fáze: Otáčky:	9.10 [mm/s RMS] +68.0 [°] 25.0 [Hz]	
DFA11: DFP11:	167 +140.7 [⁰]	DFA12: DFP12:	177 +19.2 [*]	G
08:53 25.09.2013 Vyvažování	Snímače Nast	avení tování Na	zavři Stavit Projekt	100

Použijte šipku dolů pro přechod na další obrazovku.

BĚH 2 - zkušební závaží v rovině 2

Obdobně nyní proveďte zadání a měření se zkušebním závažím v rovině 2.

Použijte šipku dolů pro přechod na další obrazovku.

BĚH 2 - výsledky

Umístěte vypočtené hmotnosti do uvedených úhlových poloh. Úhlová poloha 0 je v místě zkušebního závaží. Výsledné vývažky můžete rozdělit do libovolných úhlů stejně jako v jednorovinové úloze.

V případě rotoru s lopatkami vypadá obrazovka takto:

ADASH s.r.o.

Rovina ⁻	1	Rovina 2
Test	. závaží ponecháno	Test. závaží ponecháno
Poloha test. závaží		Poloha test. závaží
Lopatka:	4	Lopatka: 1
Hmotnost:	8.18 [9]	Hmotnost: 24.9 [g]
Lopatka:	5	Lopatka: 2
Hmotnost:	30.2 [9]	Hmotnost: 16.9 [g]

Lopatky si stejně jako v jednorovinové úloze můžete nastavit.

BĚH 3 - kontrola úspěšnosti

Postup je stejný jako v jedno rovinové úloze.

Amplituda:	3.50 [mm/s RMS]	Amplituda:	4.30 [mm/s RMS]
Fáze:	+24.0 [°]	Fáze:	+65.0 [°]
Otáčky:	1500 [RPM]	Otáčky:	1500 [RPM]
Běh 1:	12.8 [mm/s RMS]	Běh 1:	10.0 [mm/s RMS]
Úspěšnost:	72.7 [%]	Úspěšnost:	57.0 [%]
Nevývaha:	39.2 [gm]	Nevývaha:	42.0 [gm]
Jakost:	100	Jakost:	100

Trim obrazovky

Postup je stejný jako v jedno rovinové úloze.

Chyby při vyvažování

V průběhu vyvažování mohou nastat chybové situace.

Malý vliv testovacího závaží

Tato zpráva upozorňuje na malý vliv testovacího závaží.

Procentuální hodnota je odvozena od poměru (amplituda změny vektoru/ amplituda vektoru Běhu 1).

103

Varování je zobrazeno pokud je změna menší než 20% ale větší než 1%. Po tomto varování je možno pokračovat ve vyvažování s použitím této hodnoty.

Chyba se zobrazí pokud je změna menší než 1%. Není možno pokračovat ve vyvažování při takto malé změně. Výsledky by byly nesprávné.

<u>RunUp</u>

Ovládání měření

Pro měření rozběhů a doběhů stroje je určen mód RunUp. Umožňuje stejná měření jako Analyzátor, ale s průběžným řízeným ukládáním všech výsledků do paměti. V Analyzátoru probíhá měření sestavy a výsledky je potřeba uložit ručně. RunUp pracuje rozdílně. Měření jsou prováděna opakovaně za sebou a všechny výsledky ukládány.

Četnosť měření lze řídit několika způsoby. Nastavení je v **Nastavit/Nastavení trigru/Režim trigru v rozběhu**. Obvykle se řídí **změnou otáček**, kdy další měření je provedeno při změně otáček (od posledního měření) větší než je nastavená hodnota (např. 10 ot./min.). Pro řízení lze použít také **časový interval** (např. měření každých 60sec). Každé měření lze také spouštět **ručně**.

Lze také měřit a ukládat výsledky měření bez řízení, tzn. měřit a ukládat se bude maximální rychlostí, kterou přístroj zvládne. Zde je ale nebezpečí, že poměrně rychle vyčerpáte paměť přístroje.

V módu RunUp je během měření ve stavovém řádku kromě obvyklých hodnot zobrazen počet měření a ukazatel volného místa na disku.

Význam pojmů v módu RunUp

Význam všech pojmů je stejný jako v módu analyzer.

Run up měření

Na příkladě si ukážeme použití módu RunUp. Na vstupu AC1 je připojen bezkontaktní snímač posunutí.

Тур:	aps
volně (bez trig	geru),bez řízení
Kanál:	1
Jednotka:	μm
Typ průměro∨ání: lineární	
Průměro∨ání:	∨ypnuto
Rozlišení:	otáčky / 4
Uložit	

Spouštění měření nastavíme na změnou otáček a hodnotu 1Hz. Spusťte měření tlačítkem **Start** a po dosažení cílových otáček jej zastavte tlačítkem **STOP**.

Na obrazovce zůstanou zobrazeny poslední naměřené hodnoty.

Stiskněte tlačítko **Sestava** a zvolte **Zobraz Trend**. Vlevo nahoře se zobrazí seznam všech měřených doběhů v této Sestavě. Vyberte požadovaný čas měření a stiskněte **OK**. Jestliže je měření prováděno ze záznamu, je zobrazen datum a čas analýzy záznamu a za ním v závorce

datum a čas dat.

Jedno měření může být rozděleno do více souborů v závislosti na nastavení v menu Nastavení/Rozběh.

24.01.2014 09:56:21 24.01.2014 10:01:05 24.01.2014 10:04:45 (17.04.2010 02:24:10) 24.01.2014 10:05:13 (17.04.2010 02:39:00) 24.01.2014 10:05:42 (17.04.2010 02:54:00)

Menu Trend

Je-li zobrazen seznam trendů, je k dispozici menu Trend.

Smaž smaže vybrané trendy **Export** exportuje vybrané trendy

Zobrazí se graf **aps**. Tlačítkem **Graf Vlastnosti** se zobrazí menu pro různá nastavení grafů. Podrobný popis najdete v část **Analyzátor/ Popis tlačítek v módu Analyzer/ Graf Vlastnosti**.

Nahrání pochůzky do přístroje

Pro nahrání pochůzky je potřebný software DDS. Viz také DDS manuál. V tomto manuálu nepopisujeme všechny funkce softwaru DDS.

Otevřete databázi v DDS ze které budete chtít vytvořit pochůzku. Otevřete okno přístroje (Pochůzka / A4400 VA4 Pro). Objeví se okno pochůzky. Připojte přístroj k PC pomocí USB kabelu.

Stiskněte Připojit a zobrazí se okno s procesem připojování. Zobrazí se seznam dat uložených v přístroji. Přetáhněte myší požadované měřící body do okna přístroje (funkce Drag'n'Drop).

Stiskněte tlačítko Poslat. Pochůzka se nahraje do přístroje.

Tvorba pochůzkového stromu

Pochůzkový strom můžete vytvořit také přímo v přístroji. Stiskněte **Pochůzka / Vytvoř.** Pokud takto vytvořený strom chcete přenést do DDS, musíte pro něj vytvořit databázi. Viz manuál DDS.

Měření pochůzky

V úvodní obrazovce VA4Pro zvolte **Route**. Zobrazí se seznam pochůzek uložených v přístroji. Čas poslední změny pochůzky je zobrazen v pravém horním rohu.

Poznámka! Pochůzky, které byly změněny pouze na vnitřním disku a dosud nebyly exportovány na VA4_DISC, jsou označeny symbolem *x*.

Zvolte pochůzku a stiskněte OK. Zobrazí se seznam strojů.
Ventilátory Seznam stroiů

Turbo Generátor/Ventilátory/Ventilátor 1

Turbo Generátor/Ventilátory/Ventilátor 2

Zvolte stroj a stiskem šipky doprava otevřete seznam měřících míst. Za názvem místa je zobrazen počet ac kanálů v místě (1ch=1 ac kanál).

Ventilátory/Turbo Generátor/Ventilátory/Ventilátor 1

Point List		
Motor/L1RV	1ch	
Motor/L1RH	2ch	
Motor/L2RV	1ch	
Motor/L2RH	1ch	
Motor/L2AX	1ch	
Ventilátor/L3RV	3ch	
Ventilátor/L3RH	1ch	
Ventilátor/L3AX	1ch	

Měřit můžete začít stiskem tlačítka **Start**. Stiskem šipky doprava se otevře seznam jednotlivých měření v daném měřícím bodě. Před názvem měření je zobrazeno číslo kanálu (pouze pro jednokanálová ac měření). Stiskem šipky doleva se vrátíte do předchozí úrovně.

Ventilátory/Turbo Generátor/Ve

Seznam mereni	
1.ISO RMS	
1.L-BEARING	
1.OVERALL	
1.TIME 0-25k	
1.SPEC ISO	

Po stisku **Start** v měřícím bodu přístroj začne měřit všechna zde definovaná měření. Pokud se vyskytne chyba (např. nastavení snímačů) zobrazí se zpráva a přístroj čeká na nápravu nebo potvrzení nastavení. V případě, že v důsledku nastavení nelze některá měření měřit (např.absence tacho snímače pro aps) je v grafech text **Žádná data**.

Po doměření jsou data vykreslena na obrazovku nebo měření přeskočí na další měřící místo v závislosti na nastavení v **Globální nastavení** / **Zobrazení hodnot v pochůzce**.

Stiskem **Zpět** se vrátíte na seznam měřících bodů. Všechny odměřené měřící body jsou označeny symbolem $\sqrt{.}$ Jsou-li všechna měření odměřena bez chyby, bude v seznamu bodů označen následující bod a vy můžete rovnou pokračovat v pochůzce.

TG Fans/TG/Fai Seznam míst	ns/Fa	n 1
√Motor/L1RV	1ch	
Motor/L1RH	1ch	
Motor/L2RV	1ch	
Motor/L2RH	1ch	
Triax	3ch	

Označení položek

Všechny položky pochůzkového stromu (body, stroje nebo i celé pochůzky) mohou být označeny symbolem. ✓ znamená, že všechna měření položky jsou v pořádku odměřená.

! znamená chybu během měření (např. ICP chyba)

. znamená, že jsou odměřená jen některá měření položky

TG Fans/TG/Fan	s/Fa	n 1			
Seznam míst					
√Motor/L1RV	1ch				
! Motor/L1RH	1ch				
 Motor/L2RV 	1ch				
 Motor/L2RH 	1ch				
Triax	3ch				

Poznámka! Označení může být smazáno pomocí Pochůzka (Stroj, Bod, Měření) / Smaž označení

Referenční hodnoty

Z DDS se přenáší do VA4Pro referenční hodnoty (spektra a statiky). Tyto hodnoty jsou zobrazovány zároveň s aktuálně měřenou hodnotou. Referenční spektrum je zobrazováno s aktuálně měřeným v jednom grafu

Adash 4400 – VA4Pro (II)

červenou čarou. Statické referenční hodnoty jsou zobrazovány na levé straně grafu s popiskem "R:". V módu zobrazení trendu je daná úroveň zobrazena jako červená čára v grafu.

1 RMS ch:1 B:10-	-1000Hz N	VS:4096	T:1s				1	/1;-Hz
R: 3.39 mm/s		1	.07 <mark>n</mark>	nm/s				
2 spectrum ch:1 l	R:10-400	Hz L:40() T:1s				1	/1;-Hz
1.5 mm/s	RMS					; f=0;	Y=0.000;t	ot=1.11
1.3								
1.2								
1.1								
1.0-1								
0.9								
0.8-1-1-1-1-1								
0.7								
0.6								
0.5								
0.4								
0.3-11								
0.2								
	۰ ۱۰ ۱۰	ᡔᡳ᠆ᠧᠵ						Hz
	50	100	150	200	250	300	350	400

Ruční vstup

Pochůzka může obsahovat i měření, jehož hodnota se vkládá ručně (např. teplota, nebo tlak odečtené z analogového displeje). V DDS se definuje statické měření s volbou **Ruční vstup**. Takové měření se běžným způsobem přenese do pochůzky. VA4Pro při spuštění měření najde v daném bodě všechna manuální měření a postupně pro všechny zobrazí okno v němž se zadává hodnota.

Poznámky

Během měření pochůzky lze přidávat krátké poznámky ke každému měřícímu bodu. Existují tří možnosti, jak editovat poznámky.

- 1. Zadat text poznámky ručně.
- 2. Vybrat text poznámky ze seznamu Tovární poznámky
- 3. Vybrat text poznámky ze seznamu Uživatelské poznámky

Adash 4400 – VA4Pro (II)

Stiskněte levé tlačítko menu (označeno jako **Pochůzka**, **Stroj** nebo **Bod** podle toho jaká struktura je právě zobrazena). Zvolte položku **Poznámky.** Zobrazí se seznam poznámek aktuální položky (při první editaci je prázdný).

Poznámky Bod_B	
Prázdný	×

Nová poznámka

Pro vytvoření nové poznámky stiskněte tlačítko **Přidej**. Bude vyvolán dialog pro úpravu textu poznámky. V horní polovině okna můžete přímo psát text poznámky. V dolní polovině okna je seznam předdefinovaných poznámek. Existuje několik způsobů, jak editovat text poznámky.

- Vyberte jednu poznámku ze seznamu a stiskněte **Vyber**. Poznámka bude zkopírována do horní oblasti.

- Stiskněte tlačítko **Uživatel / Tovární** pro přepnutí uživatelských poznámek na tovární a zpět. Pak vyberte poznámku a stiskněte **Vyber**.

Uprav poznámku Vyber uživatelskou poznámku	
	<u> </u>
	T
Stroj neběží	<u> </u>
Vysoké opotřebení válce	
Vyrovnac su oj	
	V

- Jestliže chcete zadat vlastní text, stiskněte tlačítko **Uprav text**. Kurzor se přepne do horní oblasti a můžete psát požadovaný text. Stiskněte tlačítko **Seznam poznámek** (stejná pozice jako **Uprav text**) pro přepnutí zpět do seznamu předdefinovaných poznámek.

Text poznámky potvrďte stiskem tlačítka **Uložit**. Bude zobrazen znovu seznam poznámek s nově přidanou poznámkou.

Úpravy poznámek

Tlačítkem Uprav můžete upravovat text označené poznámky. Tlačítkem Smaž smažete označenou poznámku.

Adash 4400 – VA4Pro (II)

113

Potvrďte **OK** , poznámka se uloží a okno se uzavře. Po uložení poznámky se za názvem bodu objeví písmeno **P**.

Export na VA4_DISC

Počítač (DDS) čte data pouze z VA4_DISC, všechna měření s daty musí být exportována do této paměti. V průběhu měření jsou data ukládána pouze na vnitřní disk VA4Pro. Export na VA4_DISC neprobíhá automaticky, protože ukládání na flash paměti je pomalé, a pro rozsáhlé pochůzky to může trvat i několik minut. VA4Pro umožňuje uživateli si vybrat, kdy chce export provádět. Při zavírání pochůzky se VA4Pro zeptá 'Exportovat na VA4_DISC?" a uživatel volí z možností zda exportovat či nikoliv. V případě, že zvolí neexportovat, a požaduje přenos dat do DDS, musí být proveden později manuální export přes položku menu **Pochůzka** / **Export**.

Nahrání pochůzky do počítače

Proces je podobný jako nahrávání pochůzky do přístroje. Popis je v manuálu DDS.

Otáčky v pochůzce

V pochůzce je několik možnosti, jak získat otáčky a předat je do DDS. Zde budou uvedeny v pořadí od nejnižší priority.

Otáčky zadány v přístroji

Otáčky mohou být zadány ručně pomocí funkce Zadej otáčky (viz výše).

Otáčky zadány v DDS

V DDS mohou být nastaveny **Výchozí otáčky** jako parametr stroje (**Vlastnosti prvku stromu / otáčky**). Toto nastavení je odesláno do přístroje a umožňuje získat hodnotu otáček jiným způsobem než z tacho snímače. Parametr **Výchozí otáčky** má tři možnosti.

Číselná hodnota – hodnota zadaná jako Výchozí otáčky je odeslána do přístroje. Takto zadaná hodnota je využita pouze pro měření FASIT. V tomto případě neprobíhá detekce otáček.

Detekované – před měřením probíhá detekce otáček (viz kapitola Detekce otáček)

Ručně zadané – před měřením se vyvolá dialog Zadejte hodnotu otáček, kam zadáte hodnotu.

Detekované nebo ručně zadané otáčky jsou platné pro celý stroj. Dokud nezavřete položku stroje, stále platí stejná hodnota a další detekce již neprobíhá.

Výchozí otáčky mohou být nastaveny i pro jiné prvky stromu než je stroj. V tomto případě je možná pouze číselná hodnota. Navíc platí, že pokud nastavíte číselnou hodnotu otáček na nějakém prvku stromu a zároveň nastavíte výchozí otáčky stroje na **Detekované** nebo **Ručně zadané**, pak nastavení stroje má přednost.

Otáčky měřené

Jestliže jsou otáčky měřeny otáčkovou (tacho) sondou, budou vždy uloženy spolu s daty bez ohledu na to, zda jsou otáčky definovány některým z předchozích způsobů.

Aktuální hodnota zadaných nebo detekovaných otáček (pokud je definována) je zobrazena ve stavovém řádku vpravo (pouze jestliže neprobíhá měření) Otáčky: 50.8 Hz

Limity

V DDS můžete definovat limitní hodnoty a barvy alarmů (viz manuál DDS). Pro statické datové buňky jsou tyto limity přenášeny do přístroje spolu s pochůzkou. Překročení limitních hodnot je signalizováno během měření a také v trendech.

Recorder - nahrávání signálu

Mnoho starších si pamatuje, že v minulosti se signál nahrával na magnetofonový pásek a teprve následně byl zpracován v analyzátoru. Tento proces měl důležitou výhodu. Bylo možné signál analyzovat opakovaně. Pokud chcete provádět všechny požadované analýzy v reálném čase a např. rozběh lze provést pouze jednou, jste pod tlakem. Magnetofonový pásek byl skvělým řešením. Jednalo se o jednoduché zařízení s jednoduchou obsluhou bez nebezpečí ztráty dat.

VA4 Recorder nabízí obdobné řešení. Umožňuje záznam součastně všech 4 AC vstupů, tacho vstupu a 4 DC vstupů procesních veličin do pamětí přístroje. Vzorkovací frekvence je od 64Hz do 196kHz. Maximální délka záznamu závisí na velikosti volné paměti. Aktuální velikost volné pamětí je během pořizování záznamu zobrazena ve stavovém řádku.

GB

Nový záznam - projekt

Pro účely ovládání jsou záznamy označovány obecným názvem projekt. Spusťe mód **Recorder**. Vlevo nahoře se zobrazí seznam záznamů uložených v paměti přístroje. Stiskněte tlačítko **Projekt** a zvolte **Vytvoř**. Zadejte jméno a potvrďte **OK**. Do seznamu bude přidán nový projekt. Vyberte jej a stiskněte **OK**.

Fs[Hz]:	65536
	Rozsah=25600Hz
AC1:	zapnuto
AC2:	∨ypnuto
AC3:	∨ypnuto
AC4:	∨ypnuto
DC1:	∨ypnuto
DC2:	∨ypnuto
DC3:	∨ypnuto
DC4:	∨ypnuto
Kanál pro Trigge	r: zapnuto
Délka [minuty]:	zasta∨eno ručně
Start záznamu: 🗸	olně (bez triggeru)
Ulo	ožit

Vyberte požadovanou vzorkovací frekvenci a zapněte všechny vstupy, které chcete nahrávat. Nastavte další parametry a potvrďte **OK**.

Délka [minuty] délka v minutách nebo volba zastaveno ručně

Start záznamu volně (bez trigru) externí amplituda Podrobný popis v části Nastavení trigru/Zdroj trigru.

Spusťte záznam tlačítkem **START**. Během nahrávání jsou na obrazovce náhledy všech nahrávaných vstupních časových signálů.

Nahrávání se ukončí když:

- vyprší nastavený čas,

- je stisknuto tlačítko STOP,

- v paměti není volné místo.

Úpravy záznamu

Spusťte recorder. Zobrazí se seznam záznamů uložených v paměti. Vyberte záznam a potvrďte **OK**. Zobrazí se náhled signálů obsažených v záznamu.

Projekt

Vytvoř
Kopíruj
Přejmenuj
Smaž
Smaž data
Poznámky
Export
Export do wav
Nastavení exportu do wav

Vytvoř Kopíruj Přejmenuj Smaž Smaž Data Poznámky Export	vytvoření nového projektu uložení všech nastavených parametrů do nového projekt (záznam signálu se nekopíruje) změna názvu smazání projektu vymazání záznamu signálu z projektu přidání poznámky, viz Nastavit/ Uživatelské poznámky export záznamu na VA4_DISC Poznámka! Na VA4_DISC se vejde záznam o velikosti maximálně 4GB. To představuje přes 80 minut 4-kanálového záznamu při vzorkovací frekvenci 65536 Hz (1 sekunda takového záznamu zabírá 794752B paměti). Pokud máte větší záznam, export na VA4_DISC se nepodaří, zobrazí se hláška Není dostatek paměti . Z velkého záznamu můžete exportovat
	nepodaří, zobrazí se hláška Není dostatek paměti . Z velkého záznamu můžete exportovat pouze části. Otevřete záznam, pomocí tlačítek kurzor a délka vyberte část, kterou chcete exportovat a stiskněte tlačítko Ulož výběr jako . Po zadání názvu bude na disku přístroje uložen
	117

Adash 4400 – VA4Pro (II)

nový záznam, který bude obsahovat jen vybranou část původního záznamu. Tento menší záznam můžete exportovat. Postup můžete zopakovat pro více části původního záznamu. Jen musíte po každém exportu uvolnit VA4_DISC tak, že z něj exportovanou část stáhnete do PC a smažete z VA4_DISC.

Export do wav export záznamu do souboru ve formátu wav (wav soubor může být otevřen např. aplikací Audacity)

Nastavení exportu do wav vyvolá dialog pro nastavení parametrů exportu (viz další kapitola)

Nastavení exportu do wav

AC1:	1	
AC2:	1	
AC3:	1	
AC4:	1	
Mixer: vyp	nuto	
Rozsah [V]:	max	
Uložit		

AC1 – AC4 koeficient zesílení pro AC kanály

Před provedením exportu se každý kanál tímto koeficientem vynásobí. Takto můžete upravit poměr zastoupení jednotlivých kanálů ve výsledném wav souboru. Nastavením koeficientu na nulu kanál vypnete a nebude do wav zahrnut.

Mixer zapnuto, vypnuto

Je-li mixer zapnut, budou všechny kanály záznamu smíchány do jednoho. Je-li mixer vypnut, bude vytvořen vícekanálový wav soubor. V obou případech budou použity koeficienty kanálů.

Rozsah [V] 1.5, max, auto, jiná

Volbou rozsahu můžete určit zesílení signálu. Ve výchozím stavu (volba **max**) se předpokládá, že jste při pořizování záznamu využili celý rozsah přístroje (12V). To ale v praxi málo kdy nastává (při citlivosti snímače 100 mV/g bude použitý rozsah ve stovkách milivoltů). Nastavením rozsahu na hodnotu, která více odpovídá opravdu použitému rozsahu měření, zvýšíte hodnotu signálu ve výsledné wav.

1.5 rozsah, který vyhovuje ve většině případů

max celý rozsah přístroje

auto maximální naměřená hodnota

jiná hodnota z intervalu 0.1 - 12

Pozor! Nastavením nízkého rozsahu může dojít k překročení mezních hodnot ve výsledné wav. Po provedení exportu se zobrazí varování **Přebuzení wav**.

Pozor! Jestliže měníte hodnotu rozsahu, nemůžete porovnávat výsledné wav soubory podle hlasitosti.

Snímače

Nastavení snímačů pro další záznam.

Záznam

Nastavení všech parametrů pro další záznam.

START

Spuštění nahrávání záznamu. Pokud se jedná o již existující záznam, budou data nejdříve smazána.

Vlastnosti

Zobrazení všech parametrů.

ADASH s.r.o. Kurzor a Délka

Pokud je potřeba ze záznamu vyříznout pouze jeho část, pak použijte tlačítka Kurzor a Délka. Kurzor nastavte pomocí šipek na počátek požadovaného výřezu. Délku nastavte také dle potřeby. Výřez je označen svislými čarami. Stiskněte tlačítko **Illož výběr jako**, zadejte iméno a potvrďte **OK**

Kursor: 00:01:52,374 (2010/04/17 02:42:54)	Délka: 00:03:44,749
Otáčky (0.000; 30.0)Hz	
AC1(-15.0; 15.0)g	
and a second s	
AC2(-6.00; 6.00)g	
a la fa fa sa na	
AC3(-4.00; 4.00)g	
م المسلم الم	
AC4(-15.0; 15.0)g	
new States of States and States	

Význam šipek

Mění funkci šipek mezi Kurzor+Délka a ZoomX+Y.

Zoom X

Přepíná pohled na celý záznam a vybraný výřez.

Zoom Y

Běžný Y amplitudový zoom.

Použití záznamu pro analýzu

Po vybrání záznamu pro analýze se zobrazí nahoře na obrazovce náhled záznamu.

V průběhu analýzy je v náhledu záznamu zobrazen kurzor, který označuje právě zpracovávanou část. Polohu kurzoru můžete měnit a tak si vybírat část záznamu pro analýzu.

Jestliže chcete změnit polohu kurzoru, je potřeba nejprve vybrat (aktivovat) náhled záznamu (objeví se kolem něj červený okraj stejně jako při aktivaci jednotlivých měření). Aktivace se provádí dvěma způsoby: V modulu Analyzátor, Pochůzka a Rozběh použijte klávesu **Význam šipek**. Stiskněte ji opakovaně dokud náhled záznamu nebude aktivován.

V ostatních modulech použijte tlačítko Záznam. Opakovaným stisknutím bude opět deaktivován.

Náhled záznamu obsahuje pouze jeden kanál. Pokud je v záznamu více kanálů, můžete si vybrat pro navigaci kterýkoliv z nich. Výběr se provádí pomocí šipek **Vyber K.** nahoře vpravo (záznam musí být aktivován). Vybraný kanál lze během analýzy poslouchat ve sluchátkách.

Dočasné záznamy

Záznamy můžete mít uloženy v DDS databázi. Pro analýzu záznamu z databáze kopíruje DDS analyzovaný záznam do seznamu záznamů ve Virtual Unit a následně otevře aplikaci Virtual Unit. Tento záznam je v seznamu pouze dočasně. Při zavírání Virtual Unit je ze seznamu odstraněn. Více o volání Virtual Unit a práci se seznamy v DDS se dočtete v manuálu DDS.

<u>FASIT</u>

Zkratka FASIT znamená **FA**ult **S**ource Identification **T**ool (nástroj pro hledání zdroje závady). Tento mód by měl pomoci začátečníkům identifikovat stav stroje.

Pozor!

FASIT správně analyzuje pouze stroje s otáčkami nad 10 Hz (600 RPM). Měření rychlosti probíhá v rozsahu 10 – 1000 Hz.

Nastavení

Zvolte mód FASIT. Objeví se základní menu.

Kanál:	1
Pásmo fmin[Hz]:	10
Limity:	nízké
Uložit	

Kanál:

Číslo AC kanálu, kde je připojen snímač

Pásmo fmin [Hz]:

Ve výchozím stavu probíhá pro vyhodnocení celkového stavu stroje měření rychlostí v rozsahu 10-1000 Hz. Pro stroje s nízkými otáčkami (pod 10 Hz = 600 RPM) je tento rozsah nevyhovující. Můžete tedy nastavit nižší hodnotu fmin.

Limity:

nízké, střední, vysoké

Pomocí tohoto parametru můžete doladit hodnoty limit, podle kterých jsou zobrazena varování. Hodnota "nízké" představuje základní nastavení, které je popsáno níže v oddíle Limitní hodnoty pro hodnocení vibrací. Toto nastavení může být pro některé stroje příliš přísné. Volbou "střední" nebo "vysoké" můžete znásobit limity hodnotou $\sqrt{2}$ respektive dvě. **Poznámka!** To platí jen pro limity celkového stavu stroje. Na limity stavu ložiska nemá nastavení vliv.

Základní menu lze opětovně vyvolat tlačítkem Nastavení FASIT.

Nastavení snímače

V menu **Snímače** nastavte parametry použitého snímače. FASIT používá měření zrychlení nebo rychlosti z jednoho AC kanálu. Pro plnou funkčnost modulu je vyžadován snímač zrychlení. V případě nouze lze použit i snímače rychlosti vibrací, pak se ale nevyhodnotí stav ložiska. Pro vyhodnocení stavu ložiska je nutné měření zrychlení.

Nastavení jednotek

Hodnoty měřených veličin jsou zobrazeny v jednotkách zvolených v menu **Nastavit/Global Nastavení**. Lze zvolit jednotku otáček a frekvence. Dále můžete zvolit, zda chcete používat jednotky imperiální nebo metrické.

Použité jednotky: **metrické:** zrychlení - g rychlost - mm/s **imperiální:** zrychlení - g, rychlost – in/s

Měření

Stiskněte **Start** pro zahájení měření. Pro vyhodnocení je nutné znát otáčky. Detekce otáček probíhá způsobem popsaným v kapitole **Detekce otáček**.

Jednotlivé stupnice zobrazují závažnost závady.

- 💆 Celkový stav stroje, popis limitních hodnot je níže.
- 😵 Stav valivého ložiska, popis limitních hodnot je níže.
- Závažnost nevývahy.

ADASH s.r.o.

- 💶 Závažnost mechanického uvolnění.
- Závažnost nesouososti.
- Závažnost jiného typu poruchy.

¹⁹⁹ ISO 10816 limity (viz ISO širokopásmová měření), barva kruhu určuje stav stroje (pro A nebo B je zelená, pro C je oranžová a pro D je červená), uvnitř kruhu je zobrazena třída A až D. V okně je také informace o zařazení stroje a typu uložení. Dole je zobrazena informace, která limitní hodnota je překročena.

Výsečový graf znázorňuje procentuální zastoupení závažnosti jednotlivých závad. Barvy odpovídají barvám obdélníčků u grafů.

APS hodnota a spektrum rychlosti s vyznačením otáčkové frekvence a harmonických (označeny červenými trojúhelníky) jsou ve střední části obrazovky.

Poznámka: APS hodnota je zobrazeno pouze pokud jsou otáčky měřeny otáčkovou sondou.

Ve spodní části je zpráva o stavu stroje společně s doporučením dalšího postupu.

Limitní hodnoty pro hodnocení vibrací

Použití norem je často zmiňovaným tématem ve vibrační diagnostice. Protože v praxi existuje mnoho různých typů strojů, je obtížné v normě určit široce platné kritické limity vibrací. Jejich spolehlivost by byla nízká. Stávalo by se, že se odstaví a opravují stroje, které to nevyžadují. Na druhé straně by jistě docházelo k nečekaným poruchám, protože hodnoty byla příliš vysoké a nebyly překročeny. Je správné pokud jsou normy určeny pro úzký okruh strojů, pak je jejich spolehlivost vysoká.

Mód FASIT používá hodnoty Adash pro hodnocení úrovně vibrací také. Tyto limity nejsou opsány z žádné přímo existující normy, ale jsou výsledkem 20-letých zkušeností týmu inženýrů, který přístroje a programy v Adash s.r.o. vyvíjí, testuje a vyrábí. Je obtížné vytvořit definici kritických hodnot, která bude na jedné straně

Adash 4400 – VA4Pro (II)

jednoduchá (tzn. nemá mnoho řídících parametrů jako např.otáčky, výkon, typ ložiska, typ stroje, apod.) a na druhé straně spolehlivá.

V níže uvedených grafech je patrné, jak se odvozují limitní hodnoty Adash. Jsou definovány tři úrovně stavu stroje. Plocha po žlutou čárou odpovídá dobrému stavu, tzn. provoz bez omezení. Plocha nad žlutou čarou, ale pod červenou znamená varování. Stroj lze dále provozovat, ale pod zvýšeným dohledem. Současně je potřebu určit důvod zhoršení provozního stavu a plánovat opravu (tzn. např. výměnu ložiska) nebo údržbu (tzn. vyvážení, vyrovnání,...). Plocha nad červenou čarou znamená kritický stav a stroj by již neměl být provozován bez zásahu údržby, který vibrace sníží.

První graf obsahuje hodnoty používané pro určení celkového stavu stroje. Mezi poruchy, které celkový stav stroje určují patří především nevyváženost, nesouosost a mechanické uvolnění. "Celkové" se jim říká, protože jejich důsledky naměříme na většině měřících míst. Druhý graf obsahuje hodnoty pro určení stavu valivého ložiska. Tento stav je pouze lokální, naměříme jej pouze na příslušném jednom ložiskovém domku.

Práce s grafy je jednoduchá. Pro zjištění limitních hodnot je potřeba znát otáčky. Přístroj je buď určí sám nebo je zadá uživatel ručně. Na spodní vodorovné ose určete bod, který odpovídá otáčkám stroje. Nad tímto bodem nalezněte průsečíky s oranžovým a červeným grafe. Průměty na svislou osu pak určí hodnoty pro oranžový a červený stav. Pokud je naměřená hodnota nižší než oranžová, pak je stav OK - zelený. Pokud naměřená hodnota padne nad oranžovou a pod červenou, pak je stav Varování - oranžová. Pokud naměřená hodnota převýší červený graf, pak je stav Nebezpečí - červená.

Limity celkového stavu stroje

Limity používají měření efektivní (RMS) rychlosti kmitání v pásmu 10-1000Hz.

Limity stavu valivého ložiska

Limity používají měření efektivního (RMS) zrychlení kmitání v pásmu 500-25600Hz.

<u>Stethoscope - stetoskop</u>

Tento mód umožňuje poslech vibrací. Do Audio výstupu na horním panelu připojte sluchátka. Zvolte mód Stethoscope a potvrďte **OK**. Na obrazovce se objeví čtyři ručkové displeje. Stiskněte **START**. Všechny displeje budou ukazovat úroveň vstupních AC signálů.

Zobrazovaná hodnota je typu TRUE PEAK. Tlačítky na levé straně zvolte, který vstup bude připojen do sluchátek. Nastavení hlasitosti je vpravo.

Zpoždění audio výstupu

Protože veškeré zpracování signálu je digitální, bude na výstupu signál zpožděn. Obvyklá hodnota je 1 sec. Pokud zkusíte lehce udeřit do snímače, pak ve sluchátkách uslyšíte úder právě s tímto zpožděním.

Nastavení přehrávání

Pro nastavení přehrávání stiskněte tlačítko Nastavení přehrávání.

Rychlost přehrávání

Pouze pro přehrávání záznamu. Zrychluje (číslo větší než 1) nebo zpomaluje (číslo menší než 1) přehrávání.

Stereo ano, <u>ne</u>

Umožňuje zapnout stereo (dvoukanálový) zvukový výstup. V levém sluchátku slyšíte zvuk z prvního zvoleného kanálu, v pravém sluchátku zvuk z druhého zvoleného kanálu. O nastavování kanálů pro stereo se dočtete v následující kapitole.

Ve stavovém řádku jsou napsány aktuálně vybrané kanály (L: AC 1, R: AC 2). Písmenem L je označen kanál, který uslyšíte v levém sluchátku, písmenem R kanál v pravém sluchátku. Pomocí tlačítka Levý / Pravý, přepnete, kterou stranu nastavujete. Zvolená strana je zapsána na obrazovce nad tlačítkem. Tlačítky AC 1 – AC 4 zapnete, který kanál chcete slyšet na nastavované straně. Kanály můžete přepínat před nebo během poslechu.

<u>Lubri - kontrola mazání</u>

Konstrukce valivých ložisek dnes umožňuje dosáhnout vyšších otáček a větších zatížení. Pro zajištění bezporuchového provozu a dlouhodobé životnosti vzrůstá důležitost správného mazání.

Každý stroj má výrobcem udáno, kolik maziva spotřebuje každé ložisko za určitý počet provozních hodin. Úkolem techniků je pravidelně obcházet mazaná místa a doplňovat stav maziva. Pro valivé ložisko jsou škodlivé oba stavy, jak nedostatek tak přebytek maziva. Dochází pak k nadměrnému namáhání ložiska a rychlému opotřebení. Pro každé mazací místo je dán časový interval mazání (v provozních hodinách) a množství maziva, které má být doplněno. Tento způsob řízení mazání má závažný nedostatek v tom, že se pravidelně doplňuje předepsané množství bez znalosti, zda to není příliš mnoho či naopak málo.

Množství maziva, které ložisko skutečně pro svůj provoz potřebuje, se během jeho životnosti mění. Delší intervaly mazání v případě nového stroje jsou obvykle nevyhovující pro stroj po několika letech provozu.

Je zřejmé, že by bylo účelné nějakým způsobem určit stav mazání ložiska a doplňovat tolik maziva, kolik je skutečně zapotřebí. Řízené mazání zvýší jejich životnost a sníží náklady na mazivo a opravy.

Dlouhodobým zkoumáním chodu strojů a jejich mazání jsme získali množství poznatků, které jsme aplikovali při vývoji přístroje A4910 - Lubri a modulu Lubri v přístroji VA4. Hlavní použití přístroje je při procesu doplňování maziv. V jeho průběhu přístroj měří skutečné mazání ložiska a obsluze přesně sdělí, kdy je domazání optimální. Je tak zajištěno, že nedochází ani k nedomazání ani k přemazání.

Při použití přístroje lze zkrátit doporučené intervaly domazavání, protože přístroj vždy přesně určí optimální množství maziva, které je právě potřebné doplnit.

Důsledkem používání modulu Lubri je udržování všech strojů v nejlepší kondici z hlediska jejich mazání. Přístroj umožňuje zpřehlednit celý proces mazání a v konečném důsledku zajistit i úsporu mazacích materiálů. To při ceně některých z nich není zanedbatelná skutečnost.

Dvě možnosti měření

Pro měření mazání se používá snímač (standardní akcelerometr s citlivostí 100mV/g a s ICP napájením), který je potřeba upevnit na těleso ložiskového domku.

K dispozice jsou dvě možnosti:

1. Snímač se upevní na mazací hlavici.

Tato varianta umožňuje rychlou obsluhu protože mazací hlava se přemisťuje současně se snímačem.

Nevýhodou je částečná ztráta citlivosti, protože mazací hlava tlumí měřený signál.

2. Na ložiskovém domku se vedle mazacího otvoru osadí měřící podložka.

Tato varianta umožňuje dokonalé měření. Nevýhodou je delší příprava, protože se musí nasadit mazací hlava a snímač odděleně.

Snímač na ložiskovém domku

Pokud se na stroji provádějí diagnostická měření vibrací, bývá měřící podložka osazena a lze tuto podložku použít i pro měření mazání.

Mazání a měření

Je-li přístroj připraven, připojíme mazací hlavu. Pokud snímač není součástí mazací hlavy, přichytíme jej pomocí magnetické příchytky na připravenou nalepenou měřící podložku. Nezapomeňte sundat z magnetu podložku, která chrání magnet před slábnutím při skladování.

Zvolme mód Lubri a zadejme vstupní kanál, který použijeme pro měření. Stiskněte tlačítko START. Přístroj si změří počáteční hodnotu zrychlení g RMS v pásmu 500-25600Hz.

Na horním řádku displeje se zobrazí aktuálně měřená hodnota zrychlení v g RMS a její procentuální velikost vůči počáteční hodnotě.

Ve střední části displeje je zobrazen sloupec, jehož výška bude indikovat stav mazání ložiska. Po spuštění měření dosahuje sloupec vždy maximální úrovně.

Začneme zvolna přidávat mazivo a sledujeme výšku sloupce na displeji. Zpočátku se obvykle nic nemění, tzn. mazivo je tlačeno k ložisku, ale ještě do samotného ložiska nedorazilo. V okamžiku, kdy mazivo je dopraveno až do ložiska, dojde k poklesu výšky sloupce. Obvykle se červená sníží do žluté popř. až zelené. Přidáme ještě trochu maziva a jestliže již nedochází k dalšímu poklesu, proces domazání ukončíme.

Je-li signál z ložiska velmi nízký, tj. hodnota na displeji je stále zelená (cca 0.24g), pak se jedná pravděpodobně o nové, nebo výborně namazané ložisko.

Oktávová analýza

Ovládání tohoto módu je podobné módu Analyzátor. Vytvářejí se Sestavy a Měření.

Typ: ok	távové	spektrum	
13p. OK		stálé měření	
Kanál:		1	
Jednotka:		Pa	
Rozlišení:		1/12	
Frek∨enčni	í rozsal	n: ∨ysoký	
Váho∨ání:		žádné	
Typ průměr	ro∨ání:	lineární	
Průměro∨á	ní:	∨ypnuto	
	t	otal t=0.125s	
L (JIOZIT		
Typ	oktávo	vá snaktrum	
тур	hladina	i hluku	hladina akustického tlaku v dB je definována jako 20log ₀(p _{RMS} /p₀).
			p₀=0,00002 Pa (p je akustický tlak)
	ekviva	entní hladina	hluku Když se hladina zvuku během časového intervalu mění, pak je
			ekvivalentní hladina zvuku průměr hladiny zvuku celého intervalu.
Kanál	1 - 4		
Jednotka		jednotka měře	ní (musí být slučitelná s nastaveným snímačem)
Rozlišení		1/1, 1/3, 1/12,	1/24
Frekvenční roz	zsah	vysoký 16 - 10 nízký 1 - 100	6000 Hz pro měření hluku (střední oktávové frekvence) 00 Hz pro vibrace
Váhování Lidské ucho má frekvence. Napi stejnou hladinov je fón.Úroveň h tónu.Účelem vá definovány čtyři A B C D	á subjekt říklad čis u akustio lasitosti ahování j i typy vá pro hlas pro hlas využívá	none, A, B, C, ivní vlastnost z stý tón na 20Hz ckého tlaku nek fónů nějakého e, aby naměře hování: sitost nižší než sitost mezi 55 a sitost vyšší než no speciálně p	, D mámou jako vnímání hlasitosti. Je to funkce zvukové intenzity a z s hladinou akustického tlaku 20 dB je možné zřetelně slyšet.100Hz se oude možné slyšet, protože leží pod prahem slyšení.Jednotkou hlasitosti zvuku je definována jako číselně rovná úrovni intenzity v dB na 1000 Hz né hodnoty odpovídaly co nejvíce s úrovni hlasitosti. Historicky byly 55 fónů. a 85 fónů. ro měření hluku letadel.
Nicméně dnes j	je A váh	ování často po	užíváno pro měření bez ohledu na úroveň.
Typ průměrova	ání	linear peak hold	Standardní aritmetický průměr pro každý řádek Maximální hodnota během měření na každém řádku

exponential Kontinuální měření, kde starší spektra mají menší váhu než novější

Průměrování

počet průměrů

Každé spektrum je zobrazeno v kombinaci s dvěma pruhy na pravé straně, které jsou celková hladina akustického tlaku L a váhovaná hladina A-D (pokud je váhování zvoleno). Linka nad každým sloupcem je maximální hodnota získaná během měření.

Pro každou čáru se používá také krátká špičková paměť připomínající sněžení.

Algoritmus oktávové analýzy

Oktávová analýza používá sadu digitáľních filtrů. Každý filtr je nastaven na určitou frekvenci a má definovanou šířku pásma. Filtry jsou navrženy podle norem ANSI S1.11:2004 a IEC1260:1995.

Adash 4400 – VA4Pro (II)

<u>Bump Test</u>

Tento mód je určen provedení rázového testu pro nalezení rezonančních frekvencí. Po spuštění módu nastavte parametry **Nastavení** (použitý kanál a počet úderů pro průměrování). Test je rozdělen na dvě části. V první se nastaví amplituda pro spouštění měření úderem. V druhé části se měří

spektrum odezvy pro hledání rezonančních frekvencí.

V průběhu celého testu používejte stejnou intenzitu úderu.

Nastavení

Kanál:	1
Počet úderů:	4
Rozsah[Hz]:	400
Jednotka:	mm/s
Neg. průměrování:	ne
Uložit	

Kanál
Počet úderů
Rozsah
Jednotka
Negativní průměrování

kanál, ze kterého bude probíhat měření počet opakování měření (odpovídá počtu průměrů, při výpočtu spektra) frekvenční rozsah (nejvyšší frekvence) analýze fyzikální jednotka měření. Je povolena i integrace signálu. viz <u>Global vlastnosti</u> / <u>Nastavení trigru</u> / Negativní průměrování

Určení amplitudy pro spouštění měření

132 Další informace naleznete na www.adash.com nebo napište dotaz na email: info@adash.cz

Měření spektra odezvy

Pokračujte v úderech. Vždy sledujte pravý dolní roh obrazovky a udeřte až při zobrazení zprávy Čekání na trigr. Na obrazovce je spektrum obsahující rezonanční frekvence. Test můžete kdykoli ukončit stiskem tlačítka Stop. Graf spektra nabízí stejné možnosti jako graf spektra v modulu analyzátor.

Poznámka! Při zpracování signálu je použita 10Hz horní propust. Frekvence pod touto hodnotou jsou odstraněny.

Pro snadnější odečítání rezonančních frekvencí lze zobrazit seznam špiček (Graf Vlastnosti / Seznam špiček)

Start Nový test Export

ADASH s.r.o.

opakování měření spektra (se stejnou spouštěcí úrovní) spustí test od začátku export odměřeného spektra na VA4_DISC nebo do modulu Analyzátor

<u>ADS</u>

Modul ADS slouží k měření provozních tvarů kmitů.

Projekt ADS

Projekt ADS musíte vytvořit v aplikaci ADS na počítači. Aplikace ADS umožňuje vytvořit geometrii stroje (body, čáry a směry).

Import projektu

Zkopírujte soubor projektu (přípona ads) na VA4_DISC, buď přímo do kořenového adresáře nebo do adresáře VA4ads. Po spuštění modulu ADS budou automaticky importovány všechny projekty ADS z VA4_DISC do přístroje. Po importu budou projekty z VA4_DISC odstraněny.

Imp	ortuji z VA4_	DISC
	0%	

Přepsání geometrie

Obvykle uživatel vytvoří nejdříve jednoduchou geometrii a provede měření. Potom změní geometrii (přidá další body, čáry a směry). Když takto upravený projekt znovu importuje do přístroje, přepíše se pouze geometrie. Již odměřená data nebudou smazána.

Menu Projekt

ADASH s.r.o. **Kopíruj**

Zkopíruje označený projekt.

Přejmenuj

Přejmenuje označený projekt.

Smaž

Smaže označené projekty.

Smaž data

Smaže data označených projektů.

Export dat

Vyexportuje data na VA4_DISC. Soubor s daty *název.dsd* bude uložen do adresáře VA4ads. Tento soubor slouží k importu dat aplikací ADS.

Export projektu

Vyexportuje celý projekt na VA4_DISC. Projekt může být zkopírován do A4410 Virtual Unit.

Nastavení ADS

Po prvním otevření nového projektu ADS musíte nastavit parametry měření.

ADASH s.r.o. Parametry měření

Typ měření můžete zvolit fresp, řadová analýza nebo aps. Význam parametrů měření je stejný jako v modulu Analyzér. Nastavení ADS můžete měnit i později (tlačítko *Nastavení ADS*). Změna parametrů měření způsobí ztrátu doposud změřených dat! Jediný parametr, který můžete změnit bez ztráty odečtů je číslo kanálu.

Referenční směr

Parametr je dostupný pouze při měření typu fresp. Jedná se o směr z modelu, ke kterému je připojen vstupní (referenční) snímač. Referenční směr zůstává stejný pro všechna měření. Změna referenčního směru způsobí ztrátu všech doposud změřených dat!

Frekvence pro animaci

Určuje jaká frekvence z frekvenční odezvy bude vybrána pro animaci modelu. Parametr je dostupný pouze při měření typu fresp. Pro řadovou analýzu a aps je automaticky jako frekvence pro animaci určená otáčková frekvence.

Měřítko vibrací

<0, 1>

Měřítko amplitud vibrací v animaci.

Pohled

Tlačítko Pohled slouží ke změně zobrazení na obrazovce. Na pohledu závisí význam okolních tlačítek.

Pohled Stroj

Na celé obrazovce je zobrazena geometrie. Směry jsou označeny čárkami a čísly. Aktivní bod je označen blikajícím kolečkem. Aktivní směr je barevně zvýrazněn. Referenční směr je označen písmenem R.

Pohled Měření

Na celé obrazovce je zobrazen graf měření. Číslo grafu vlevo nahoře označuje aktivní směr.

Pohled Stroj + Měření

Na obrazovce je zobrazen pohled stroj i graf měření. Tlačítkem *Pohled* vyberete, který z nich bude aktivní (červený okraj).

Automatická změna pohledu

Na začátku každého měření se změní pohled ze Stroje na Měření. Po uložení dat se změní pohled z Měření na Stroj.

Tlačítka pohledu Stroj

Fit

Automatický zoom stroje v okně.

Význam šipek

Mění význam šipek.

Bod

Posouvá aktivní bod (označený blikajícím kolečkem). Po potvrzení tlačítkem OK se přesune aktivní směr na nový aktivní bod.

Směr

Posouvá aktivní směr na aktivním bodě. Změnit aktivní směr můžete také pomocí tlačítka Zadat směr

Zoom/Move/Rotace

Zoom/Move/Rotace modelu.

Další informace naleznete na www.adash.com nebo napište dotaz na email: info@adash.cz

Funkce zoom a posun jsou dostupné také pomocí dotykové obrazovky.

Blik zap/Blik vyp

Zapne/Vypne blikání nezměřených směrů v modelu

Skrýt zap/Skrýt vyp

Zapne/Vypne skrývání změřených směrů v modelu

Spustit animaci

Spustí/zastaví animaci

Zadat směr

Umožní zadat číslo směru, na kterém bude probíhat měření.

Start

Zahájí měření na aktivním směru.

Tlačítka pohledu Měření

Většina tlačítek má stejný význam jako v modulu Analyzér

180° zap/180°vyp

Zapne/Vypne funkci 180°. Je-li funkce zapnuta, bude fáze naměřených dat při uložení otočena o 180°. To se hodí v případě, že jste nuceni umístit snímač opačně než je definován směr v modelu.

Ulož

Uloží naměřená data. Data označeného směru jsou zobrazena v grafu měření i při pozdějším prohlížení. Směry, na kterých jsou uložena data, jsou v modelu barevně vyznačeny. Ve stavovém řádku jsou zobrazeny amplituda, fáze a otáčky, které jsou použity pro označený směr v animaci. Bruska

2: A = 5.69 g 0-P, P = +45.0°, f = 50 Hz

<u>Ultrazvuk</u>

Úvod

Na začátku této kapitoly bychom chtěli vysvětlit několik pojmů.

Vyšší frekvence nad 20 kHz jsou nejlépe detekovány ultrazvukovým snímačem. Nejužitečnější informace se nachází mezi 30 a 50 kHz. Ultrazvukový modul Adash umožňuje měření ultrazvukové energie.

Ultrazvuk se šíří v tuhých, kapalných nebo plynných látkách (ne ve vakuu), a má velmi krátký a směrový průběh. Má několik společných vlastností s vibracemi.

Měření ultrazvuku ve vzduchu:

- Energie ultrazvuku se snadno odráží a slábne.
- Při detekci ultrazvukové energie platí pravidlo, poloviční vzdálenosti = dvojnásobná amplituda.
- Při detekci úniku stlačeného plynu nezapomeňte, že se ultrazvuk snadno odráží. Otočte se v opačný
- směr abyste se ujistili, že ultrazvuk nepřichází z druhé strany.
- Použijte např. karton pro odstínění jiných zdrojů

Mikrofon pro měření ultrazvuku detekuje:

- Úniky plynů
- Elektrické jiskření
- Korónový jev
- Měření těsnosti

Měřením lze také zjišťovat:

- Prvotní příznaky špatného mazání valivých ložisek
- Zvukové rázy valivých ložisek, včetně ložisek s pomalými otáčkami pod 100 ot.m.
- Závady převodovek
- Závady ventilů
- Poruchy pohonů

Nastavení snímače

Měření v módu **Ultrazvuk** můžete provádět pouze na prvním kanálu, který má speciálně vyvedeno napájení pro ultrazvukový snímač.

Výchozí snímač pro měření ultrazvuku je automaticky nastaven po spuštění módu Ultrazvuk.

Použitý snímač na AC1: 200 mV / Pa, ICP vypnuto

Pokud potřebujete upravit hodnoty snímače, proveďte nastavení v menu **Snímače / AC1**. Při příštím spuštění budou automaticky nastaveny Vámi určené hodnoty.

Pozor! Při ukončení módu Ultrazvuk bude nastaven zpět snímač, který byl nastaven před otevřením módu.

Nastavení

Nastavení pro mód Ultrazvuk provedete pomocí tlačítka Nastavení.

Rozsah – minimum

minimální hodnota ukazatele úrovně ultrazvuku

Rozsah – maximum

maximální hodnota ukazatele úrovně ultrazvuku

ADASH s.r.o. **Měření**

Pro zahájení měření stiskněte tlačítko **Start**. V průběhu měření je zobrazena aktuální hodnota úrovně ultrazvuku a tzv. **Shock Factor**. Jedná se o hodnotu, která charakterizuje zastoupení rázů v signále. Čím vyšší je číslo, tím více rázů signál obsahuje. Hodnota kolem 1.5 znamená čistý tón (sinový signál). Ve spodní části obrazovky je zobrazen měřený časový signál. Tlačítkem **Auto Rozsah** přizpůsobíte rozsah grafu aktuálnímu signálu.

Měření ukončíte stiskem tlačítka Stop.

Poslech

Měřený signál je převeden do slyšitelné oblasti a vyveden na audio výstup přístroje. Připojte sluchátka k audio výstupu přístroje a můžete jej poslouchat. Hlasitost se ovládá pomocí tlačítek vpravo.

Pozor! Protože veškeré zpracování signálu je digitální, bude na výstupu signál zpožděn. Obvyklá hodnota je 1 sekunda.

A4410 Virtual Unit

Aplikace A4410 Virtual Unit je virtuální přístroj A4400, který můžete provozovat na osobním počítači. Slouží jako demo ukázka skutečného přístroje nebo k provozu s přístrojem A4404 - Signal Analyzer Box. Pak pracuje stejně jako skutečný přístroj. I bez A4404 - Signal Analyzer Boxu můžete pomocí této aplikace zpracovávat záznamy z vašeho přístroje na osobním počítači.

Instalace

Instalační soubor A4410 Virtual Unit stáhněte z webu nebo spusťte z instalačního disku zařízení A4404.

Instalace ovladačů pro A4404 – Signal Analyzer Box

Jestliže používáte virtuální přístroj spolu s A4404 - Signal Analyzer Box, musíte si nainstalovat ovladače. Zde je uveden postup instalace ovladačů:

1) Ze stránek www.adash.cz/Ke stažení/Software třetích stran stáhněte ovladače FTDI (CDM20828 WHQL Certified.zip)

2) Archív rozbalte do libovolného adresáře (např. C:\CDM208228 WHQL Certified)

3) Připojte A4404 - Signal Analyzer Box k vašemu počítači pomocí USB kabelu.

4) Systém otevře aplikaci Průvodce nově rozpoznaným hardwarem. Je možné, že váš systém již potřebné ovladače obsahuje, v tom případě se Průvodce nově rozpoznaným hardwarem neotevře, ovladače nemusíte instalovat, ostatní kroky přeskočte.
ADASH s.r.o.

Adash 4400 – VA4Pro (II)

5) V *Průvodci nově rozpoznaným hardwarem* vyberte možnost *Instalovat ze seznamu či daného umístění* a stiskněte tlačítko *Další* (nepovolujte žádné automatické instalace).

6) Zvolte možnost Při hledání zahrnout toto umístění.

7) Stiskněte tlačítko *Procházet* a v následujícím dialogu označte adresář, který jste rozbalili z archivu např. (C:\ CDM208228_WHQL_Certified)

8) Stiskněte tlačítko Další a počkejte dokud se instalace ovladačů neprovede.

9) Můžete smazat adresář ovladačů.

Instalace software

Spusťte instalaci A4410 Virtual Unit. Během instalace budete vyzvání k zadání cesty k adresáři pro ukládání dat.

Instalace licence

Abyste mohli používat virtuální přístroj spolu s A4404 Signal Analyzer Box, musíte ještě do složky workdir*data*\ *VA4licence* (workdir je cesta k pracovnímu adresáři, kterou jste zadali během instalace, výchozí hodnota je C:\ ProgramData\A4410 Virtual Unit) nahrát soubor adash.a44, který obdržíte spolu s A4404 – Signal Analyzer Box. Od verze 0227 může název licenčního souboru obsahovat i text sériového čísla ve formátu adashx123456.a44.

Update

Přechod na novější verzi provedete tak, že spustíte instalační soubor s novější verzí. Stará verze bude nahrazena za novou. Vaše data zůstanou zachována.

Provoz

Po spuštění aplikace se objeví hlavní obrazovka stejně jako ve skutečném přístroji. Ve virtuálním přístroji můžete používat všechny funkce reálného přístroje. Narozdíl od reálného přístroje používejte ke stisku tlačítek myš. Texty můžete zadávat přímo z klávesnice. Pokud nemáte A4404 - Signal Analyzer Box nemůžete měřit živý signál, ale můžete zpracovávat záznamy. A4410_VirtualUnit obsahuje jeden záznam na prohlížení (*Default Rec*), několik záznamu je k dispozici na stránkách Adash, nebo si do virtuálního přístroje můžete importovat záznamy z vašeho přístroje (postup viz níže – Propojení virtuálního přístroje se skutečným přístrojem).

VA4_DISC

Aplikace po prvním spuštění vytvoří v pracovním adresáři adresář VA4_DISC. Tento adresář využívá virtuální přístroj stejným způsobem jako reálný přístroj používá svůj VA4_DISC. To znamená, že zde exportuje projekty a odsud importuje projekty.

Struktura VA4 DISC

Složka VA4analyser: sem jsou exportovány projekty analyzeru Složka VA4balancer: sem jsou exportovány projekty vyvažování Složka VA4balancer_protocol: sem jsou ukládány reporty vyvažování Složka VA4route: sem jsou exportovány pochůzky Složka VA4runup: sem jsou exportovány projekty runupu Složka VA4recorder: sem jsou exportovány záznamy Soubor va4ver: informace o verzi přístroje (pro DDS)

Po prvním spuštění nemusí adresář VA4_DISC obsahovat všechny tyto složky. Některé aplikace vytváří, až když je potřebuje.

Propojení virtuálního přístroje se skutečným přístrojem

V této kapitole bude popsáno, jak sdílet projekty mezi virtuálním a skutečným přístrojem. K počítači s virtuálním přístrojem připojte skutečný přístroj pomocí USB kabelu. V systému se vám přístroj přihlásí jako VA4_DISC. Nyní můžete kopírovat data mezi reálným a virtuálním přístrojem.

ADASH s.r.o.

Kopírování projektů do přístroje

Zkopírujte složku projektu *workdir* *Data**VA4analyser**NázevProjektu* (workdir je cesta k pracovnímu adresáři, kterou jste zadali během instalace, výchozí hodnota je C:\ProgramData\A4410 Virtual Unit, *NázevProjektu* je složka projektu, který chcete zkopírovat) do složky *VA4_DISC**VA4analyser* (Zde je *VA4_DISC* vyměnitelné úložiště skutečného přístroje, ne složka virtuálního přístroje!!!).

Po zkopírování projektu musíte ve složce VA4_DISC\VA4analyser\NázevProjektu vytvořit prázdný soubor s názvem *script.dds* (tím zajistíte import projektu do přístroje, stejný soubor vytváří i DDS).

Stejným způsobem můžete kopírovat projekty runupu (soubor VÁ4runup) a pochůzky (soubor VA4route). Projekty jiných modulů nelze do přístroje kopírovat.

Příklad:

Ve virtuálním přístroji mám pochůzku s názvem Elektrárna a chci ji mít i v přístroji.

1) Připojím přístroj k počítači.

2) Mezi disky se objeví nové zařízení s vyměnitelným úložištěm s názvem VA4_DISC.

3) Na tomto disku si otevřu soubor VA4route.

4) Otevřu si soubor workdir \Data\Va4route.

V něm najdu mezi ostatními složkami složku Elektrárna.

5) Složku Elektrárna zkopíruji do složky VA4route na VA4_DISC.

6) Ve složce VA4_DISC\VA4route\Elektrárna vytvořím prázdný soubor s názvem script.dds.

7) Nyní když otevřu v přístroji modul Pochůzka, naimportuje se Elektrárna mezi ostatní pochůzky.

Kopírování projektů a záznamů z přístroje

!!!Pozor: Abyste mohli kopírovat projekty z přístroje, musíte je napřed v přístroji exportovat na VA4_DISC (stejně jako export pro DDS).

Zkopírujte složku VA4_DISC\VA4analyser\NázevProjektu (Zde je VA4_DISC vyměnitelné úložiště skutečného přístroje, ne složka virtuálního přístroje!!!, NázevProjektu je složka projektu, který chcete zkopírovat) do složky workdir\Data\VA4analyser (workdir je cesta k pracovnímu adresáři, kterou jste zadali během instalace, výchozí hodnota je C:\ProgramData\A4410 Virtual Unit). V tomto případě není potřeba pracovat se soubory typu script.dds jako při kopírování do přístroje.

Stejným způsobem můžete kopírovat projekty runupu (složka VA4runup), pochůzky (složka VA4route), záznamy (složka VA4recorder) a projekty vyvažování složka VA4balancer).

Příklad:

Ve skutečném přístroji mám pochůzku s názvem *Elektrárna* a chci ji mít i ve virtuálním přístroji.

1) Připojím přístroj k počítači

- 2) Mezi disky se mi objeví nové zařízení s vyměnitelným úložištěm s názvem VA4_DISC.
- 3) Na tomto disku si otevřu složku VA4route.
- 4) V něm si najdu mezi ostatními složku Elektrárna.
- 5) Otevřu si adresář workdir\Data\VA4route.
- 6) Zkopíruji do něj složku Elektrárna z VA4_DISC.

7) Nyní když si otevřu seznam pochůzek ve virtuálním přístroji, bude mezi nimi i pochůzka Elektrárna

Rozdíly mezi Virtual Unit a skutečným přístrojem

- Virtuální přístroj používá pro export a import adresář VA4 DISC místo flash paměti VA4 DISC

- Virtuální přístroj má nefunkční tlačítko Update (update verze se provádí výše uvedeným způsobem)
 Aplikace virtuálního přístroje je v okně
- Pokud není k dispozici A4404 Signal Analyzer Box neumožňuje virtuální přístroj měření živého signálu

4 AC

0.35 - max 90000 Hz

Příloha A: Technická specifikace

Vstupy

Dynamické vstupy (AC - střídavé)

Počet paralelních synchronních vstupů (AC): Frekvenční rozsah (-3dB):

Vstupní rozsah: Časování měření: A/D rozlišení:

Dynamický rozsah: Nastavení vstupů: Odolnost vstupů: Vstupní impedance: Vstupní veličiny: Integrace: 2D zpracování: Přesnost: ICP napájení: HP filtrace: LP filtrace: Konektor:

(196 kHz vzorkovací frekvence) +/- 12V (pouze jeden rozsah, žádné předzesilovače) plně synchronní 24 bit vstup, 64 bit vnitřně, s plovoucí čárkou (žádné předzesilovače nejsou použity !) 120 dB napěťí nebo ICP (jednotlivě pro každý vstup) do 30 V 100 kOhm zrychlení, rychlost, posunutí, jakýkoliv střídavý signál jedno a dvojnásobná, plně digitální polární zobrazení v závislosti na úhlech snímačů < 0.5 % 18 V. 3.8 mA 0.35Hz - 12800 Hz (uživatelská definice) 25Hz - 90000 Hz (uživatelská definice) Binder 712

Snímání otáček - Tacho vstup

Počet: Rozsah otáček: Vstupní impedance: Měřená veličina: Vstupní rozsah: 1 nezávislý vstup pro snímání otáček (tacho) 0,01 Hz - 1000 Hz 80 kOhm napětí + 10V (jeden rozsah, žádné předzesilovače) nebo +/-30V (tacho signal + DC) s přídavným tacho konvertorem <0.5 % 0.1 -9.9 V, uživatelská definice do 48 V Binder 712

Přesnost: Úroveň spouštění (práh): Odolnost vstupu: Konektor:

Statické vstupy (DC nebo 4-20mA - stejnosměrné)

Počet: Vstupní rozsah: Vstupní impedance: A/D rozlišení: Přesnost: Odolnost vstupu: 4 DC nebo 4-20mA (musí být specifikováno při výrobě) +/- 24 V nebo 4-20mA 100kOhm (V-DC), 250 Ohm (4-20mA-DC) 12 bit 0.1% fsd do 30 V

Měřící funkce

Rychlost zpracování: Amplitudové jednotky : Frekvenční jednotky: Veličiny: Měřítko: Kurzor: Spouštění: 0.1 sec pro 25600 čarové FFT spektrum Metrické, Imperialní (anglické) nebo definované uživatelem Hz, CPS, RPM, CPM, řády zrychlení, rychlost, posunutí a definované uživatelem Linearní a Logaritmické, obě X a Y osy Jednoduchý, Harmonický, Postranní pásma) volně

147

Signálový Rozsah:

Zpracování dat:

Adash 4400 – VA4Pro (II) tacho amplituda (kladná nebo záporná externí (napětí) plný, žádné auto-rozsahy TRUE RMS, TRUE PEAK, TRUE PEAK-PEAK širokopásmové nebo pásmové hodnoty HP, LP a BP filtry definované uživatelem časové signály (8 388 608 vzorků max) FFT v reálném čase 3D kaskádové grafy

amplituda+fáze na otáčkové frekvenci

procesní statické DC nebo 4-20mA hodnoty

ACMT metoda pro pomalo-otáčkové ložiska

Rectangular, Hanning, Exponential, Transient

řádová analýza

měření otáček

256 - 8 388 608

25 - 90 000Hz

ano

1-255

ano

ano

100 - 3 276 800

RMS, 0-P a P-P

1/2tý - 10tý řád

obálková demodulace

max 131 072 sec (36 hod.)

Počet vzorků pro časový signál: Délka časového signálu: Spektrální rozsah: Počet čar: Seznam špiček ve spektru: Měřítko spektra: Okna: Řádová analýza: Průměrování: Překrývání (overlap): Smax, Gap a Centerline grafy pro bezkontaktní snímače:

Záznam signálů:

Vzorkovací frekvence: Příklad délky záznamu:spotřeba 3 GB/ 1 hodina při vzorkování 64kHz (4ch AC+4ch DC+1ch tacho signál) (tzn. 100GB paměti umožňuje přes 30 hodin záznamu, pro nižší vzorkovací frekvence je maximální délka záznamu násobně větší)

Vyvažování:

Počet rovin: Rozsah otáček: Rádce pro doporučení postupu: Faktor kvality vyvážení podle ISO1940: Graf vektorů všech měření: Vyvažovací protokol: Trim funkce: Rozklad závaží (např. na lopatky): Ruční vstup: Zkušební závaží:

Atom 1.9 GHz

Obecné VA4 Pro II (od roku 2018):

Procesor: RAM: Display: Paměť (SSD): Interface: Napájení: Pracovní teplota: Rozměry: Hmotnost:

2 GB LCD colour 191 x 134 mm (9.1" diagonal), 1140x800 rozlišení 64 GB USB Li-lon long life battery pack (více než 8 hodin standard režimu) -10 °C - +50 °C 280 x 205 x 55 mm 2.2 kg

Adash 4400 - VA4Pro (II)

ADASH s.r.o. Obecné VA4 Pro (do roku 2018):

Procesor: RAM: Display: Paměť (SSD): Interface: Napájení: Pracovní teplota: Rozměry: Hmotnost: Atom 1.6 GHz 1 GB LCD colour 174 x 127 mm (8.5" diagonal), 800x600 rozlišení 128 GB USB Li-lon long life battery pack (více než 5 hodin standard režimu) -10 °C - +50 °C 280 x 205 x 55 mm 2.5 kg

Příloha B: Měření fáze

Jednokanálová měření s tacho značkami

Mějme časový signál zadaný rovnicí y=cos(ωt). Používáme funkci cosinus stejně jako FFT. To usnadní porozumění a výpočty.

Počáteční poloha našeho rotujícího vektoru V je 90°. Počáteční polohu označme T0.

Jestliže vektor V udělá 3 otáčky, pak dostaneme následující signál.

150 Další informace naleznete na www.adash.com nebo napište dotaz na email: info@adash.cz

Nyní přidejme tacho signál. Tacho pulz umístíme do polohy T0.

Na následujícím obrázku je odpovídající časový signál s tacho značkami.

Nyní vezmeme v úvahu fázový posun mezi časovým a tacho signálem. Tento fázový posun značíme φ . Vzorec pro časový signál pro libovolný fázový posun zobecníme na y=cos($\omega t + \varphi$). Předchozí vzorec odpovídal hodnotě $\varphi=0^{\circ}$. Hodnotu φ můžeme na přístroji vidět při měření 1x amp+fáze. Jestliže tacho značky jsou v časovém signálu umístěny v maximech, pak je $\varphi = 0^{\circ}$.

Dále předpokládejme φ =45°. Pro lepší čitelnost používáme údaje ve stupních. Pro matematické výpočty bychom museli hodnoty převést na radiány.

Na následujícím obrázku je časový signál s tacho pulzy pro ϕ = 45°.

Časový signál předbíhá tacho značky o 45°. Hodnota fáze v měření 1x amp+fáze je v tomto případě 45°.

Nyní vezměme φ=-45°.

Odpovídající časový signál s tacho značkami je na následujícím obrázku.

Časový signál je zpožděn. V měření 1x amp+fáze se v tomto případě zobrazí hodnota -45°.

Tento přístup je použit v měření 1x amp+fáze a v řadové analýze.

Dvoukanálová měření

Vždy musíme definovat čísla kanálu A a B, např. A je na kanále 1 a B je na kanále 2. A reprezentuje vstup a B reprezentuje výstup. Nyní chceme zjistit fázovou odezvu.

V měření typu fázový posun můžete vidět např. toto:

ΦB-ΦA: +59.9°

Logika je stejná jako pro jednokanálová měření s tacho značkami. A zde představuje tacho signál. Tudíž 60° znamená že signál B předbíhá A o 60°.

Tento přístup je použit u dvoukanálových měření typu fázový posun a frekvenční odezva.

Připomínka

V této kapitole hovoříme o časových signálech a jejich pozicích. Používáme slova jako předbíhá a zpožďuje.

Vždy mějte na paměti:

Předbíhat se např. o 60° je stejné jako být zpožděn o 300°. Nezapomínejte, že pracujeme s periodickým časovým signálem.

<u>Příloha C: Překlady názvosloví typů měření a</u> <u>vlastností grafů</u>

Označení vstupů

AC1 - AC4 první až čtvrtý vstup pro měření střídavého napětí DC1 - DC4 první až čtvrtý vstup pro měření stejnosměrného napětí

Typy měření

wideband	širokopásmová hodnota
g-env wideband	obálková širokopásmová hodnota
time signal	časový signál
g-env time signal	časový signál obálky
orbit	orbita
Smax	Smax (maximální amplituda při měření orbity)
spec	spektrum
g-env spec	spektrum obálky
speed	otáčky
ACMT	ACMT
orda	řádová analýza
aps	amplituda/ fáze na otáčkové fervenci
fresp	frekvenční odezva
dc	měření stejnosměrné (DC) veličiny
center line	měření polohy hřídele bezkontaktními dvěma snímači

Vlastnosti měření

Detect Type	Hodnota
Result Type	Typ výsledků
Channel	Kanál, Vstup
Band fmin (Hz)	Pásmo fmin (Hz)
Band fmax(Hz)	Pásmo fmax(Hz)
ENV fmin[Hz]	ENV fmin[Hz]
ENV fmax[Hz]	ENV fmax[Hz]
Speed control	Řízeno otáčkami
Input channel	Vstup
Output channel	Výstup
FFT Window	Okno
Range	Rozsah
ACMT FS(Hz)	Vzorkování ACMT(Hz)
Samples	Počet vzorků
Revolutions	Počet otáček
Lines	Počet čar
Orders	Řády
Avg	Průměrování
Overlap	Překrývání
Resolution	Rozlišení
Unit	Jednotka

Vlastnosti grafů

Rozsah
Kurzor
Osa X

ADASH s.r.o.	
Axe Y	Osa Y
Axe Z	Osa Z
Unit	Jednotka
Range[dB]	Rozsah[dB]
Detect Type	Hodnota
Peaks List	Seznam špiček
Orda Table	Tabulka řádů
Primary Cursor Primárr	ní kurzor
Center Line View	Pohled CenterLine
Fresp View	Pohled Fresp
Aps View	Pohled Aps
Spec View	Pohled Spektrum
Orbit View	Pohled Orbita

Zkratky v popisech grafů

ch	kanál, vstup
NS	počet vzorků
R	počet otáček
L	počet čar
В	frekveční rozsah (band)
R	frekvenční rozsah (range)
FS, fs	vzorkovací frekvence
Y	hodnota v místě kurzoru na ose Y
t	poloha kurzoru na časové ose
f	poloha kurzoru na frekvenční ose
df	rozlišení spektra
A	hodnota signálu A v místě kurzoru signálu (orbita, frekv.odezva, center line)
В	hodnota signálu B v místě kurzoru signálu (orbita, frekv.odezva, center line)
A	amplituda v místě kurzoru
Р	fáze v místě kurzoru
Coh	koherence v místě kurzoru
Re	reálná hodnota v místě kurzoru
lm	imaginární hodnota v místě kurzoru
Х	hodnota signálu přepočteného z A a B na osu X (orbita, center line)
Y	hodnota signálu přepočteného z A a B na osu Y (orbita, center line)
S	hodnota otáček
D	absolutní hodnota rozdílu amplitudy vůči refenční poloze
d	délka delta kurzoru
RMS	efektivní rms hodnota (pro delta kurzor v časovém signálu)
tot	celková hodnota pro delta kurzor ve spektru (RMS, 0-p nebo P-P)